skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Millimeter observational signatures of flares in magnetically arrested black hole accretion models
ABSTRACT In general relativistic magnetohydrodynamic (GRMHD) simulations, accreted magnetic flux on the black hole horizon episodically decays, during which magnetic reconnection heats up the plasma near the horizon, potentially powering high-energy flares like those observed in M87* and Sgr A*. We study the mm observational counterparts of such flaring episodes in very high resolution GRMHD simulations. The change in 230 GHz flux during the expected high energy flares depends primarily on the efficiency of accelerating γ ≳ 100 (Te ≳ 1011 K) electrons. For models in which the electrons are heated to Te ∼ 1011 K during flares, the hot plasma produced by reconnection significantly enhances 230 GHz emission and increases the size of the 230 GHz image. By contrast, for models in which the electrons are heated to higher temperatures (which we argue are better motivated), the reconnection-heated plasma is too hot to produce significant 230 GHz synchrotron emission, and the 230 GHz flux decreases during high energy flares. We do not find a significant change in the mm polarization during flares as long as the emission is Faraday thin. We also present expectations for the ring-shaped image as observed by the Event Horizon Telescope during flares, as well as multiwavelength synchrotron spectra. Our results highlight several limitations of standard post-processing prescriptions for the electron temperature in GRMHD simulations. We also discuss the implications of our results for current and future observations of flares in Sgr A*, M87*, and related systems. Appendices contain detailed convergence studies with respect to resolution and plasma magnetization.  more » « less
Award ID(s):
2206610 2206607
PAR ID:
10468225
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2924-2941
Size(s):
p. 2924-2941
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic reconnection can power bright, rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high-resolution (5376 × 2304 × 2304 cells) general-relativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, nonaxisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highly magnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet’s magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A* observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in the mass accretion rate during the flare and the resulting low-density magnetosphere make it easier for very-high-energy photons produced by reconnection-accelerated particles to escape. The extreme-resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and properties of the flare. 
    more » « less
  2. ABSTRACT Sgr A* exhibits regular variability in its multiwavelength emission, including daily X-ray flares and roughly continuous near-infrared (NIR) flickering. The origin of this variability is still ambiguous since both inverse Compton and synchrotron emission are possible radiative mechanisms. The underlying particle distributions are also not well constrained, particularly the non-thermal contribution. In this work, we employ the GPU-accelerated general relativistic magnetohydrodynamics code H-AMR to perform a study of flare flux distributions, including the effect of particle acceleration for the first time in high-resolution 3D simulations of Sgr A*. For the particle acceleration, we use the general relativistic ray-tracing code bhoss to perform the radiative transfer, assuming a hybrid thermal+non-thermal electron energy distribution. We extract ∼60 h light curves in the sub-millimetre, NIR and X-ray wavebands, and compare the power spectra and the cumulative flux distributions of the light curves to statistical descriptions for Sgr A* flares. Our results indicate that non-thermal populations of electrons arising from turbulence-driven reconnection in weakly magnetized accretion flows lead to moderate NIR and X-ray flares and reasonably describe the X-ray flux distribution while fulfilling multiwavelength flux constraints. These models exhibit high rms per cent amplitudes, $$\gtrsim 150{{\ \rm per\ cent}}$$ both in the NIR and the X-rays, with changes in the accretion rate driving the 230 GHz flux variability, in agreement with Sgr A* observations. 
    more » « less
  3. Abstract Active galactic nuclei in general, and the supermassive black hole in M87 in particular, show bright and rapid gamma-ray flares up to energies of 100 GeV and above. For M87, the flares show multiwavelength components, and the variability timescale is comparable to the dynamical time of the event horizon, suggesting that the emission may come from a compact region near the nucleus. However, the emission mechanism for these flares is not well understood. Recent high-resolution general-relativistic magnetohydrodynamic simulations show the occurrence of episodic magnetic reconnection events that can power flares near the black hole event horizon. In this work, we analyze the radiative properties of the reconnecting current layer under the extreme plasma conditions applicable to the black hole in M87 from first principles. We show that abundant pair production is expected in the vicinity of the reconnection layer, to the extent that the produced secondary pair plasma dominates the reconnection dynamics. Using analytic estimates backed by two-dimensional particle-in-cell simulations, we demonstrate that in the presence of strong synchrotron cooling, reconnection can produce a hard power-law distribution of pair plasma imprinted in the outgoing synchrotron (up to a few tens of MeV) and the inverse-Compton signal (up to TeV). We produce synthetic radiation spectra from our simulations, which can be directly compared with the results of future multiwavelength observations of M87* flares. 
    more » « less
  4. null (Ed.)
    ABSTRACT Large-amplitude Sgr A* near-infrared (NIR) flares result from energy injection into electrons near the black hole event horizon. Astrometry data show continuous rotation of the emission region during bright flares, and corresponding rotation of the linear polarization angle. One broad class of physical flare models invokes magnetic reconnection. Here, we show that such a scenario can arise in a general relativistic magnetohydrodynamic simulation of a magnetically arrested disc. Saturation of magnetic flux triggers eruption events, where magnetically dominated plasma is expelled from near the horizon and forms a rotating, spiral structure. Dissipation occurs via reconnection at the interface of the magnetically dominated plasma and surrounding fluid. This dissipation is associated with large increases in NIR emission in models of Sgr A*, with durations and amplitudes consistent with the observed flares. Such events occur at roughly the time-scale to re-accumulate the magnetic flux from the inner accretion disc, ≃10 h for Sgr A*. We study NIR observables from one sample event to show that the emission morphology tracks the boundary of the magnetically dominated region. As the region rotates around the black hole, the NIR centroid and linear polarization angle both undergo continuous rotation, similar to the behaviour seen in Sgr A* flares. 
    more » « less
  5. Abstract Low-collisionality plasma in a magnetic field generically develops anisotropy in its distribution function with respect to the magnetic field direction. Motivated by the application to radiation from accretion flows and jets, we explore the effect of temperature anisotropy on synchrotron emission. We derive analytically and provide numerical fits for the polarized synchrotron emission and absorption coefficients for a relativistic bi-Maxwellian plasma (we do not consider Faraday conversion/rotation). Temperature anisotropy can significantly change how the synchrotron emission and absorption coefficients depend on observing angle with respect to the magnetic field. The emitted linear polarization fraction does not depend strongly on anisotropy, while the emitted circular polarization does. We apply our results to black hole imaging of Sgr A* and M87* by ray tracing a GRMHD simulation and assuming that the plasma temperature anisotropy is set by the thresholds of kinetic-scale anisotropy-driven instabilities. We find that the azimuthal asymmetry of the 230 GHz images can change by up to a factor of 3, accentuating (T>T) or counteracting (T<T) the image asymmetry produced by Doppler beaming. This can change the physical inferences from observations relative to models with an isotropic distribution function, e.g., by allowing for larger inclination between the line of sight and spin direction in Sgr A*. The observed image diameter and the size of the black hole shadow can also vary significantly due to plasma temperature anisotropy. We describe how the anisotropy of the plasma can affect future multifrequency and photon ring observations. We also calculate kinetic anisotropy-driven instabilities (mirror, whistler, and firehose) for relativistically hot plasmas. 
    more » « less