- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1705464
- Publication Date:
- NSF-PAR ID:
- 10292252
- Journal Name:
- Journal for ImmunoTherapy of Cancer
- Volume:
- 9
- Issue:
- 2
- Page Range or eLocation-ID:
- e001819
- ISSN:
- 2051-1426
- Sponsoring Org:
- National Science Foundation
More Like this
-
Over the last decade, both early diagnosis and targeted therapy have improved the survival rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic program known as epithelial-mesenchymal transition (EMT), which is mostly latent in adults, can be activated under selective pressures, rendering these cancers resistant to chemo- and immunotherapies. EMT can also drive tumor metastases, which in turn also suppress the cancer-fighting activity of cytotoxic T cells that traffic into the tumor, causing immunotherapy to fail. In this review, we compare and contrast immunotherapy treatment options of non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We discuss why, despite breakthrough progress in immunotherapy, attaining predictable outcomes in the clinic is mostly an unsolved problem for these tumors. Although these two cancer types appear different based upon their tissues of origin and molecular classification, gene expression indicate that they possess many similarities. Patient tumors exhibit activation of EMT, and resulting stem cell properties in both thesemore »
-
Immunotherapy is an emerging form of cancer therapy that is associated with promising outcomes. However, most cancer patients either do not respond to immunotherapy or develop resistance to treatment. The resistance to immunotherapy is poorly understood compared to chemotherapy and radiotherapy. Since immunotherapy targets cells within the tumor microenvironment, understanding the behavior and interactions of different cells within that environment is essential to adequately understand both therapy options and therapy resistance. This review focuses on reviewing and analyzing the special features of cancer stem cells (CSCs), which we believe may contribute to cancer resistance to immunotherapy. The mechanisms are classified into three main categories: mechanisms related to surface markers which are differentially expressed on CSCs and help CSCs escape from immune surveillance and immune cells killing; mechanisms related to CSC-released cytokines which can recruit immune cells and tame hostile immune responses; and mechanisms related to CSC metabolites which modulate the activities of infiltrated immune cells in the tumor microenvironment. This review also discusses progress made in targeting CSCs with immunotherapy and the prospect of developing novel cancer therapies.
-
Programmed cell death protein-1 (PD-1) checkpoint immunotherapy efficacy remains unpredictable in glioblastoma (GBM) patients due to the genetic heterogeneity and immunosuppressive tumor microenvironments. Here, we report a microfluidics-based, patient-specific ‘GBM-on-a-Chip’ microphysiological system to dissect the heterogeneity of immunosuppressive tumor microenvironments and optimize anti-PD-1 immunotherapy for different GBM subtypes. Our clinical and experimental analyses demonstrated that molecularly distinct GBM subtypes have distinct epigenetic and immune signatures that may lead to different immunosuppressive mechanisms. The real-time analysis in GBM-on-a-Chip showed that mesenchymal GBM niche attracted low number of allogeneic CD154+CD8+ T-cells but abundant CD163+ tumor-associated macrophages (TAMs), and expressed elevated PD-1/PD-L1 immune checkpoints and TGF-β1, IL-10, and CSF-1 cytokines compared to proneural GBM. To enhance PD-1 inhibitor nivolumab efficacy, we co-administered a CSF-1R inhibitor BLZ945 to ablate CD163+ M2-TAMs and strengthened CD154+CD8+ T-cell functionality and GBM apoptosis on-chip. Our ex vivo patient-specific GBM-on-a-Chip provides an avenue for a personalized screening of immunotherapies for GBM patients.
-
Abstract Background The etiology of sporadic Parkinson’s disease (PD) remains uncertain, but genetic, epidemiological, and physiological overlap between PD and inflammatory bowel disease suggests that gut inflammation could promote dysfunction of dopamine-producing neurons in the brain. Mechanisms behind this pathological gut-brain effect and their interactions with sex and with environmental factors are not well understood but may represent targets for therapeutic intervention.
Methods We sought to identify active inflammatory mechanisms which could potentially contribute to neuroinflammation and neurological disease in colon biopsies and peripheral blood immune cells from PD patients. Then, in mouse models, we assessed whether dextran sodium sulfate-mediated colitis could exert lingering effects on dopaminergic pathways in the brain and whether colitis increased vulnerability to a subsequent exposure to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We assessed the involvement of inflammatory mechanisms identified in the PD patients in colitis-related neurological dysfunction in male and female mice, utilizing mice lacking the Regulator of G-Protein Signaling 10 (RGS10)—an inhibitor of nuclear factor kappa B (NFκB)—to model enhanced NFκB activity, and mice in which CD8+T-cells were depleted.
Results High levels of inflammatory markers including
CD8B and NFκB p65 were found in colon biopsies from PD patients, and reduced levels of RGS10 were found in immune cells inmore »Conclusions This study identifies peripheral inflammatory mechanisms in PD patients and explores their potential to impact central dopaminergic pathways in mice. Our findings implicate a sex-specific interaction between gastrointestinal inflammation and neurologic vulnerability that could contribute to PD pathogenesis, and they establish the importance of CD8+T-cells in this process in male mice.
Graphical abstract -
Cancer has been one of the most significant and critical challenges in the field of medicine. It is a leading cause of death both in the United States and worldwide. Common cancer treatments such as radiation and chemotherapy can be effective in destroying cancerous tissue but cause many detrimental side effects. Thus, recent years have seen new treatment methods that do not harm healthy tissue, including immunotherapy. Adoptive cell therapy (ACT) is one form of immunotherapy in which patients’ immune cells are modified to target cancer cells and then reintroduced into the body. ACT is promising, but most current treatments are inefficient and costly. Widespread implementation of ACT has been a difficult task due to the high treatment cost and inefficient methods currently used to expand the cells. Additionally, if the manufacturing process is not carefully controlled, it can result in the cells losing their cancer-killing ability after expansion. To address the need for an economically feasible culture process to expand immune cells for immunotherapy, our laboratory has designed a centrifugal bioreactor (CBR) expansion system. The CBR uses a balance of centrifugal forces and fluid forces, as shown in Figure 1, to quickly expand infected CD8+ T-cells from a bovinemore »