skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 28, 2026

Title: Multifunctional Superparamagnetic Copper Iron Oxide Nanoparticles for Synergistic Cancer Therapy via Magnetic Hyperthermia, Oxidative Stress and Immune Reprogramming
Abstract Aggressive cancers, characterized by high metastatic potential and resistance to conventional therapies, present a significant challenge in oncology. Current treatments often fail to effectively target metastasis, recurrence, and the immunosuppressive tumor microenvironment, while causing significant off‐target toxicity. Here, superparamagnetic copper iron oxide nanoparticles (SCIONs) as a multifunctional platform that integrates magnetic hyperthermia therapy, immune modulation, and targeted chemotherapeutic delivery, aiming to provide a more comprehensive cancer treatment is presented. Specifically, SCIONs generate localized hyperthermia under an alternating magnetic field while delivering a copper‐based anticancer agent, resulting in a synergistic anticancer effect. The hyperthermia induced by SCIONs caused ER stress and ROS production, leading to significant tumor cell death, while the copper complex further enhanced oxidative stress, ferroptosis, and apoptosis. Beyond direct cytotoxicity, SCIONs disrupted the tumor microenvironment by inhibiting cancer‐associated fibroblasts, downregulating epithelial‐mesenchymal transition markers, and reducing cell migration and invasion, thereby limiting metastasis. Additionally, SCION‐based therapy reprogrammed the immune microenvironment by inducing immunogenic cell death and enhancing dendritic cell activation, resulting in increased CD8+ T cell infiltration and amplified antitumor immunity. This integrated approach targets primary and metastatic tumors while mitigating immunosuppression, offering a promising next‐generation therapy for combating cancer with enhanced efficacy and reduced side effects.  more » « less
Award ID(s):
1943302
PAR ID:
10641144
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
35
Issue:
35
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cancer led to the deaths of more than 9 million people worldwide in 2018, and most of these deaths were due to metastatic tumor burden. While in most cases, we still do not know why cancer is lethal, we know that a total tumor burden of 1 kg—equivalent to one trillion cells—is not compatible with life. While localized disease is curable through surgical removal or radiation, once cancer has spread, it is largely incurable. The inability to cure metastatic cancer lies, at least in part, to the fact that cancer is resistant to all known compounds and anticancer drugs. The source of this resistance remains undefined. In fact, the vast majority of metastatic cancers are resistant to all currently available anticancer therapies, including chemotherapy, hormone therapy, immunotherapy, and systemic radiation. Thus, despite decades—even centuries—of research, metastatic cancer remains lethal and incurable. We present historical and contemporary evidence that the key actuators of this process—of tumorigenesis, metastasis, and therapy resistance—are polyploid giant cancer cells. 
    more » « less
  2. Platelets extravasate from the circulation into tumor microenvironment, enable metastasis, and confer resistance to chemotherapy in several cancers. Therefore, arresting tumor-platelet cross-talk with effective and atoxic antiplatelet agents in combination with anticancer drugs may serve as an effective cancer treatment strategy. To test this concept, we create an ovarian tumor microenvironment chip (OTME-Chip) that consists of a platelet-perfused tumor microenvironment and which recapitulates platelet extravasation and its consequences. By including gene-edited tumors and RNA sequencing, this organ-on-chip revealed that platelets and tumors interact through glycoprotein VI (GPVI) and tumor galectin-3 under shear. Last, as proof of principle of a clinical trial, we showed that a GPVI inhibitor, Revacept, impairs metastatic potential and improves chemotherapy. Since GPVI is an antithrombotic target that does not impair hemostasis, it represents a safe cancer therapeutic. We propose that OTME-Chip could be deployed to study other vascular and hematological targets in cancer. 
    more » « less
  3. null (Ed.)
    We demonstrate a label free and high-throughput microbubble-based acoustic microstreaming technique to isolate rare circulating cells such as circulating cancer associated fibroblasts (cCAFs) in addition to circulating tumor cells (CTCs) and immune cells ( i.e. leukocytes) from clinically diagnosed patients with a capture efficiency of 94% while preserving cell functional integrity within 8 minutes. The microfluidic device is self-pumping and was optimized to increase flow rate and achieve near perfect capturing of rare cells enabled by having a trapping capacity above the acoustic vortex saturation concentration threshold. Our approach enables rapid isolation of CTCs, cCAFs and their associated clusters from blood samples of cancer patients at different stages. By examining the combined role of cCAFs and CTCs in early cancer onset and metastasis progression, the device accurately diagnoses both cancer and the metastatic propensity of breast cancer patients. This was confirmed by flow cytometry where we observed that metastatic breast cancer blood samples had significantly higher percentage of exhausted CD8 + T cells expressing programmed cell death protein 1 (PD1), higher number of CD4 + T regulatory cells and T helper cells. We show for the first time that our lateral cavity acoustic transducers (LCATs)-based approach can thus be developed into a metastatic propensity assay for clinical usage by elucidating cancer immunological responses and the complex relationships between CTCs and its companion tumor microenvironment. 
    more » « less
  4. Abstract Cancer metastasis is the leading cause of death for those afflicted with cancer. In cancer metastasis, the cancer cells break off from the primary tumor, penetrate nearby blood vessels, and attach and extravasate out of the vessels to form secondary tumors at distant organs. This makes extravasation a critical step of the metastatic cascade. Herein, with a focus on triple‐negative breast cancer, the role that the prospective secondary tumor microenvironment's mechanical properties play in circulating tumor cells' extravasation is reviewed. Specifically, the effects of the physically regulated vascular endothelial glycocalyx barrier element, vascular flow factors, and subendothelial extracellular matrix mechanical properties on cancer cell extravasation are examined. The ultimate goal of this review is to clarify the physical mechanisms that drive triple‐negative breast cancer extravasation, as these mechanisms may be potential new targets for anti‐metastasis therapy. 
    more » « less
  5. Abstract Rare but consistent reports of abscopal remission in patients challenge the notion that radiotherapy (RT) is a local treatment; radiation‐induced cancer cell death can trigger activation and recruitment of dendritic cells to the primary tumor site, which subsequently initiates systemic immune responses against metastatic lesions. Although this abscopal effect was initially considered an anomaly, combining RT with immune checkpoint inhibitor therapies has been shown to greatly improve the incidence of abscopal responses via modulation of the immunosuppressive tumor microenvironment. Preclinical studies have demonstrated that nanomaterials can further improve the reliability and potency of the abscopal effect for various different types of cancer by (1) altering the cell death process to be more immunogenic, (2) facilitating the capture and transfer of tumor antigens from the site of cancer cell death to antigen‐presenting cells, and (3) co‐delivering immune checkpoint inhibitors along with radio‐enhancing agents. Several unanswered questions remain concerning the exact mechanisms of action for nanomaterial‐enhanced RT and for its combination with immune checkpoint inhibition and other immunostimulatory treatments in clinically relevant settings. The purpose of this article is to summarize key recent developments in this field and also highlight knowledge gaps that exist in this field. An improved mechanistic understanding will be critical for clinical translation of nanomaterials for advanced radio‐immunotherapy. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease 
    more » « less