skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph coloring with decision diagrams
We introduce an iterative framework for solving graph coloring problems using decision diagrams. The decision diagram compactly represents all possible color classes, some of which may contain edge conflicts. In each iteration, we use a constrained minimum network flow model to compute a lower bound and identify conflicts. Infeasible color classes associated with these conflicts are removed by refining the decision diagram. We prove that in the best case, our approach may use exponentially smaller diagrams than exact diagrams for proving optimality. We also develop a primal heuristic based on the decision diagram to find a feasible solution at each iteration. We provide an experimental evaluation on all 137 DIMACS graph coloring instances. Our procedure can solve 52 instances optimally, of which 44 are solved within 1 minute. We also compare our method to a state-of-the-art graph coloring solver based on branch-and-price, and show that we obtain competitive results. Lastly, we report an improved lower bound for the open instance C2000.9.  more » « less
Award ID(s):
1918102
PAR ID:
10292261
Author(s) / Creator(s):
Date Published:
Journal Name:
Mathematical programming
ISSN:
1436-4646
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an exact algorithm for graph coloring and maximum clique problems based on SAT technology. It relies on four sub-algorithms that alternatingly compute cliques of larger size and colorings with fewer colors. We show how these techniques can mutually help each other: larger cliques facilitate finding smaller colorings, which in turn can boost finding larger cliques. We evaluate our approach on the DIMACS graph coloring suite. For finding maximum cliques, we show that our algorithm can improve the state-of-the-art MaxSAT-based solver IncMaxCLQ, and for the graph coloring problem, we close two open instances, decrease two upper bounds, and increase one lower bound. 
    more » « less
  2. Can a given set system be drawn as an Euler diagram? We present the first method that correctly decides this question for arbitrary set systems if the Euler diagram is required to represent each set with a single connected region. If the answer is yes, our method constructs an Euler diagram. If the answer is no, our method yields an Euler diagram for a simplified version of the set system, where a minimum number of set elements have been removed. Further, we integrate known wellformedness criteria for Euler diagrams as additional optimization objectives into our method. Our focus lies on the computation of a planar graph that is embedded in the plane to serve as the dual graph of the Euler diagram. Since even a basic version of this problem is known to be NP‐hard, we choose an approach based on integer linear programming (ILP), which allows us to compute optimal solutions with existing mathematical solvers. For this, we draw upon previous research on computing planar supports of hypergraphs and adapt existing ILP building blocks for contiguity‐constrained spatial unit allocation and the maximum planar subgraph problem. To generate Euler diagrams for large set systems, for which the proposed simplification through element removal becomes indispensable, we also present an efficient heuristic. We report on experiments with data from MovieDB and Twitter. Over all examples, including 850 non‐trivial instances, our exact optimization method failed only for one set system to find a solution without removing a set element. However, with the removal of only a few set elements, the Euler diagrams can be substantially improved with respect to our wellformedness criteria. 
    more » « less
  3. Buchin, Kevin and (Ed.)
    Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams - a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation. 
    more » « less
  4. We consider how to generate graphs of arbitrary size whose chromatic numbers can be chosen (or are well-bounded) for testing graph coloring algorithms on parallel computers. For the distance-1 graph coloring problem, we identify three classes of graphs with this property. The first is the Erdős-Rényi random graph with prescribed expected degree, where the chromatic number is known with high probability. It is also known that the Greedy algorithm colors this graph using at most twice the number of colors as the chromatic number. The second is a random geometric graph embedded in hyperbolic space where the size of the maximum clique provides a tight lower bound on the chromatic number. The third is a deterministic graph described by Mycielski, where the graph is recursively constructed such that its chromatic number is known and increases with graph size, although the size of the maximum clique remains two. For Jacobian estimation, we bound the distance-2 chromatic number of random bipartite graphs by considering its equivalence to distance-1 coloring of an intersection graph. We use a “balls and bins” probabilistic analysis to establish a lower bound and an upper bound on the distance-2 chromatic number. The regimes of graph sizes and probabilities that we consider are chosen to suit the Jacobian estimation problem, where the number of columns and rows are asymptotically nearly equal, and have number of nonzeros linearly related to the number of columns. Computationally we verify the theoretical predictions and show that the graphs are often be colored optimally by the serial and parallel Greedy algorithms. 
    more » « less
  5. We propose quasi-stable coloring , an approximate version of stable coloring. Stable coloring, also called color refinement, is a well-studied technique in graph theory for classifying vertices, which can be used to build compact, lossless representations of graphs. However, its usefulness is limited due to its reliance on strict symmetries. Real data compresses very poorly using color refinement. We propose the first, to our knowledge, approximate color refinement scheme, which we call quasi-stable coloring. By using approximation, we alleviate the need for strict symmetry, and allow for a tradeoff between the degree of compression and the accuracy of the representation. We study three applications: Linear Programming, Max-Flow, and Betweenness Centrality, and provide theoretical evidence in each case that a quasi-stable coloring can lead to good approximations on the reduced graph. Next, we consider how to compute a maximal quasi-stable coloring: we prove that, in general, this problem is NP-hard, and propose a simple, yet effective algorithm based on heuristics. Finally, we evaluate experimentally the quasi-stable coloring technique on several real graphs and applications, comparing with prior approximation techniques. 
    more » « less