skip to main content

Title: A Lightweight Exoskeleton-Based Portable Gait Data Collection System
For the controller of wearable lower-limb assistive devices, quantitative understanding of human locomotion serves as the basis for human motion intent recognition and joint-level motion control. Traditionally, the required gait data are obtained in gait research laboratories, utilizing marker-based optical motion capture systems. Despite the high accuracy of measurement, marker-based systems are largely limited to laboratory environments, making it nearly impossible to collect the desired gait data in real-world daily-living scenarios. To address this problem, the authors propose a novel exoskeleton-based gait data collection system, which provides the capability of conducting independent measurement of lower limb movement without the need for stationary instrumentation. The basis of the system is a lightweight exoskeleton with articulated knee and ankle joints. To minimize the interference to a wearer’s natural lower-limb movement, a unique two-degrees-of-freedom joint design is incorporated, integrating a primary degree of freedom for joint motion measurement with a passive degree of freedom to allow natural joint movement and improve the comfort of use. In addition to the joint-embedded goniometers, the exoskeleton also features multiple positions for the mounting of inertia measurement units (IMUs) as well as foot-plate-embedded force sensing resistors to measure the foot plantar pressure. All sensor signals are routed more » to a microcontroller for data logging and storage. To validate the exoskeleton-provided joint angle measurement, a comparison study on three healthy participants was conducted, which involves locomotion experiments in various modes, including overground walking, treadmill walking, and sit-to-stand and stand-to-sit transitions. Joint angle trajectories measured with an eight-camera motion capture system served as the benchmark for comparison. Experimental results indicate that the exoskeleton-measured joint angle trajectories closely match those obtained through the optical motion capture system in all modes of locomotion (correlation coefficients of 0.97 and 0.96 for knee and ankle measurements, respectively), clearly demonstrating the accuracy and reliability of the proposed gait measurement system. « less
; ; ; ; ;
Award ID(s):
1734501 1351520
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the design and preliminary testing of an instrumented exoskeleton system, which is targeted at collecting gait data of the human locomotion to support the controller development of lower-limb wearable robots. This compact and lightweight device features a unique two-degree-of-freedom joint to minimize the interference to the user movement and a simple yet effective adjustment mechanism to fit subjects at different heights. For the gait measurement, the device incorporates embedded joint goniometers to obtain the knee and ankle positions, and inertial measurement units to obtain three-dimensional kinematic information. Force-sensing resistors are also incorporated into the shoe insole for plantar pressure measurement. Sensor signals are routed to an onboard microcontroller system for data storage and transfer, and the system is fully self-contained with onboard battery to facilitate data collection in various environments. A prototype of the exoskeleton was fabricated, and preliminary testing was conducted on two healthy subjects in various postures and modes of movement (walking, sitting, standing, stair climbing, etc.). The evaluation of a temporal event detection test showed no more than 5.5% mean variation in the measure of step counts by the sensory system and video annotation. These results indicate that the exoskeleton can provide an accuratemore »measurement of gait information, using measurements taken from external video recordings as the benchmark in this preliminary validation study.« less
  2. This paper presents the design and implementation of a novel multi-activity control strategy for a backdrivable knee-ankle exoskeleton. Traditionally, exoskeletons have used trajectory-based control of highly geared actuators for complete motion assistance. In contrast, we develop a potential energy shaping controller with ground reaction force (GRF) feedback that facilitates multi-activity assistance from a backdrivable exoskeleton without prescribing pre-defined kinematics. Although potential energy shaping was previously implemented in an exoskeleton to reduce the user’s perceived gravity, this model-based approach assumes the stance leg is fully loaded with the weight of the user, resulting in excessive control torques as weight transfers to the contralateral leg during double support. The presented approach uses GRF feedback to taper the torque control output for any activity involving multiple supports, leading to a closer match with normative joint moments in simulations based on pre-recorded human data during level walking. To implement this strategy, we present a custom foot force sensor that provides GRF feedback to the previously designed exoskeleton. Finally, results from an able-bodied human subject experiment demonstrate that the exoskeleton is able to reduce muscular activation of the primary muscles related to the knee and ankle joints during sit-to-stand, stand-to-sit, level walking, and stair climbing.
  3. Abstract This paper presents a new two-step design procedure and preliminary kinematic evaluation of a novel, passive, six-bar knee-ankle-foot orthosis (KAFO). The kinematic design and preliminary kinematic gait analysis of the KAFO are based on motion capture data from a single healthy male subject. Preliminary kinematic evaluation shows that the designed passive KAFO is capable of supporting flexion and extension of the knee joint during stance and swing phases of walking. The two-step design procedure for the KAFO consists of (1) computational synthesis based on user's motion data and (2) performance optimization. In the computational synthesis step, first the lower leg (knee-ankle-foot) of the subject is approximated as a 2R kinematic chain and its target trajectories are specified from motion capture data. Six-bar linkages are synthesized to coordinate the angular movements of knee and ankle joints of the 2R chain at 11 accuracy points. The first step of the design procedure yields 332 six-bar KAFO design candidates. This is followed by a performance optimization step in which the KAFO design candidates are optimally modified to satisfy specified constraints on end-effector trajectory and shape. This two-step process yields an optimally designed passive six-bar KAFO that shows promising kinematic results at themore »knee joint of the user during walking. The preliminary prototype manufactured is cost effective, easy to operate, and suitably demonstrates the feasibility of the proposed concept.« less
  4. Neural decoding of human locomotion, including automated gait intention detection and continuous decoding of lower limb joint angles, has been of great interest in the field of Brain Machine Interface (BMI). However, neural decoding of gait in developing children has yet to be demonstrated. In this study, we collected physiological data (electroencephalography (EEG), electromyography (EMG)), and kinematic data from children performing different locomotion tasks. We also developed a state space estimation model to decode lower limb joint angles from scalp EEG. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1 – 3 Hz) were used for prediction. The decoding accuracies (Pearson’s r values) were promising (Hip: 0.71; Knee: 0.59; Ankle: 0.51). Our results demonstrate the feasibility of neural decoding of children walking and have implications for the development of a real-time closed-loop BMI system for the control of a pediatric exoskeleton.
  5. Powered exoskeletons for gait rehabilitation and mobility assistance are currently available for the adult population and hold great promise for children with mobility limiting conditions. Described here is the development and key features of a modular, lightweight and customizable powered exoskeleton for assist-as-needed overground walking and gait rehabilitation. The pediatric lower-extremity gait system (PLEGS) exoskeleton contains bilaterally active hip, knee and ankle joints and assist-as-needed shared control for young children with lower-limb disabilities such as those present in the Cerebral Palsy, Spina Bifida and Spinal Cord Injured populations. The system is comprised of six joint control modules, one at each hip, knee and ankle joint. The joint control module, features an actuator and motor driver, microcontroller, torque sensor to enable assist-as-needed control, inertial measurement unit and system monitoring sensors. Bench-testing results for the proposed joint control module are also presented and discussed.