skip to main content

Title: Engineering characteristics of ground motions recorded in the 2019 Ridgecrest Earthquake Sequence
We present a database and analyze ground motions recorded during three events that occurred as part of the July 2019 Ridgecrest earthquake sequence: a moment magnitude (M) 6.5 foreshock on a left‐lateral cross fault in the Salt Wells Valley fault zone, an M 5.5 foreshock in the Paxton Ranch fault zone, and the M 7.1 mainshock, also occurring in the Paxton Ranch fault zone. We collected and uniformly processed 1483 three‐component recordings from an array of 824 sensors spanning 10 seismographic networks. We developed site metadata using available data and multiple models for the time‐averaged shear‐wave velocity in the upper 30 m (⁠VS30⁠) and for basin depth terms. We processed ground motions using Next Generation Attenuation (NGA) procedures and computed intensity measures including spectral acceleration at a number of oscillator periods and inelastic response spectra. We compared elastic and inelastic response spectra to seismic design spectra in building codes to evaluate the damage potential of the ground motions at spatially distributed sites. Residuals of the observed spectral accelerations relative to the NGA‐West2 ground‐motion models (GMMs) show good average agreement between observations and model predictions (event terms between about −0.3 and 0.5 for peak ground acceleration to 5 s). The average more » attenuation with distance is also well captured by the empirical NGA‐West2 GMMs, although azimuthal variations in attenuation were observed that are not captured by the GMMs. An analysis considering directivity and fault‐slip heterogeneity for the M 7.1 event demonstrates that the dispersion in the near‐source ground‐motion residuals can be reduced. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1826458
Publication Date:
NSF-PAR ID:
10292292
Journal Name:
Bulletin of the Seismological Society of America
Volume:
110
Issue:
4
Page Range or eLocation-ID:
1474-1494
ISSN:
0037-1106
Sponsoring Org:
National Science Foundation
More Like this
  1. Long‐period ground motions from large (Mw≥7.0) subduction‐zone earthquakes are a real threat for large‐scale human‐made structures. The Nankai subduction zone, Japan, is expected to host a major megathrust earthquake in the near future and has therefore been instrumented with offshore and onshore permanent seismic networks. We use the ambient seismic field continuously recorded at these stations to simulate the long‐period (4–10 s) ground motions from past and future potential offshore earthquakes. First, we compute impulse response functions (IRFs) between an ocean‐bottom seismometer of the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) network, which is located offshore on the accretionarymore »wedge, and 60 onshore Hi‐net stations using seismic interferometry by deconvolution. As this technique only preserves the relative amplitude information of the IRFs, we use a moderate Mw 5.5 event to calibrate the amplitudes to absolute levels. After calibration, the IRFs are used together with a uniform stress‐drop source model to simulate the long‐period ground motions of the 2004 Mw 7.2 intraplate earthquake. For both events, the residuals of the 5\\% damped spectral acceleration (SA) computed from the horizontal and vertical components of the observed and simulated waveforms exhibit almost no bias and acceptable uncertainties. We also compare the observed SA values of the Mw 7.2 event to those from the subduction‐zone BC Hydro ground‐motion model (GMM) and find that our simulations perform better than the model. Finally, we simulate the long‐period ground motions of a hypothetical Mw 8.0 subduction earthquake that could occur along the Nankai trough. For this event, our simulations generally exhibit stronger long‐period ground motions than those predicted by the BC Hydro GMM. This study suggests that the ambient seismic field recorded by the ever‐increasing number of ocean‐bottom seismometers can be used to simulate the long‐period ground motions from large megathrust earthquakes.« less
  2. Abstract The Mw 7.1 47 km deep earthquake that occurred on 30 November 2018 had deep societal impacts across southcentral Alaska and exhibited phenomena of broad scientific interest. We document observations that point to future directions of research and hazard mitigation. The rupture mechanism, aftershocks, and deformation of the mainshock are consistent with extension inside the Pacific plate near the down‐dip limit of flat‐slab subduction. Peak ground motions >25%g were observed across more than 8000  km2, though the most violent near‐fault shaking was avoided because the hypocenter was nearly 50 km below the surface. The ground motions show substantial variation, highlighting the influence ofmore »regional geology and near‐surface soil conditions. Aftershock activity was vigorous with roughly 300 felt events in the first six months, including two dozen aftershocks exceeding M 4.5. Broad subsidence of up to 5 cm across the region is consistent with the rupture mechanism. The passage of seismic waves and possibly the coseismic subsidence mobilized ground waters, resulting in temporary increases in stream flow. Although there were many failures of natural slopes and soils, the shaking was insufficient to reactivate many of the failures observed during the 1964 M 9.2 earthquake. This is explained by the much shorter duration of shaking as well as the lower amplitude long‐period motions in 2018. The majority of observed soil failures were in anthropogenically placed fill soils. Structural damage is attributed to both the failure of these emplaced soils as well as to the ground motion, which shows some spatial correlation to damage. However, the paucity of instrumental ground‐motion recordings outside of downtown Anchorage makes these comparisons challenging. The earthquake demonstrated the challenge of issuing tsunami warnings in complex coastal geographies and highlights the need for a targeted tsunami hazard evaluation of the region. The event also demonstrates the challenge of estimating the probabilistic hazard posed by intraslab earthquakes.« less
  3. Seismic isolation systems for buildings are generally selected to achieve higher seismic performance objectives, such as continued operation or immediate occupancy following a design earthquake event. However, recent large scale tests have suggested that these objectives may be compromised if the shaking includes large vertical acceleration components that are damaging to the nonstructural components and contents. Some research has been conducted to develop three dimensional isolation systems that can isolate the structure from both the horizontal and vertical components of ground motion. In several cases, systems have been proposed without much justification of the target design parameters. Rocking has beenmore »noted as a potential concern for structures with 3D isolation systems, and complex systems have been proposed to control the rocking. In this study, the fundamental dynamic response of structures with 3D isolation systems is explored. Target horizontal and vertical spectra for a representative strong motion site were developed based on NEHRP recommendations, and horizontal and vertical ground motions were selected that best fit the target spectra when the same amplitude scale factor was applied to all three motion components. Using a simple model of a rigid block resting on linear isolation bearings, the following aspects are evaluated for a wide range of horizontal and vertical isolation periods: response modes and severity of rocking, horizontal and vertical displacement demands in the isolation bearings, and attenuation of both horizontal and vertical accelerations in the structure relative to the ground acceleration. Preliminary results point to a number of useful observations. For example, rocking appears to be an issue only if the horizontal and vertical isolation periods are closely spaced. Helical spring isolation systems that have been applied to a few structures have this characteristic. However, if the horizontal isolation period is large relative to the vertical isolation period, troublesome rocking can be avoided. In addition, other researchers have proposed systems with vertical isolation periods on the order of 2 seconds, which require large displacement and damping capacity. However, preliminary results suggest that vertical isolation periods as low as 0.5 seconds will be effective in attenuating the vertical acceleration. Limiting the vertical isolation period will make design of a 3D isolation system more feasible with respect to vertical displacement capacity and avoiding rocking.« less
  4. Abstract We measure pseudospectral and peak ground motions from 44 intermediate‐depth Mw≥4.9 earthquakes in the Cook Inlet region of southern Alaska, including those from the 2018 Mw 7.1 earthquake near Anchorage, to identify regional amplification features (0.1–5  s period). Ground‐motion residuals are computed with respect to an empirical ground‐motion model for intraslab subduction earthquakes, and we compute bias, between‐, and within‐event terms through a linear mixed‐effects regression. Between‐event residuals are analyzed to assess the relative source characteristics of the Cook Inlet earthquakes and suggest a difference in the scaling of the source with depth, relative to global observations. The within‐event residuals aremore »analyzed to investigate regional amplification, and various spatial patterns manifest, including correlations of amplification with depth of the Cook Inlet basin and varying amplifications east and west of the center of the basin. Three earthquake clusters are analyzed separately and indicate spatial amplification patterns that depend on source location and exhibit variations in the depth scaling of long‐period basin amplification. The observations inform future seismic hazard modeling efforts in the Cook Inlet region. More broadly, they suggest a greater complexity of basin and regional amplification than is currently used in seismic hazard analyses.« less
  5. ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 mainshock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering themore »Mw 7.1 mainshock that happened ∼34  hr later. Rupture of the Mw 7.1 mainshock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼5  m, located at a depth range of 3–8 km near the Mw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼2  km/s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼0.5  MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large variations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes.« less