The ShakeOut simulations of a M7.8 earthquake on the southern San Andreas fault (2008) studies predicted unexpectedly large ground motions throughout Southern California due to waveguide e#ects from interconnected sedimentary basins in 3D velocity model. Here, we re-examine the ground motion predictions from the ShakeOut scenario using the most recent updates on the velocity models and the realistic surface topography from the Digital Elevation Model. The exceptional scalability and performance of the AWP-ODC due to the most recent advancements allows for examination of plenty earth models including the irregular surface topography at low computational cost. 
                        more » 
                        « less   
                    
                            
                            Waveguide or Not? Revised Ground-Motion Simulations for Greater Los Angeles from the M  7.8 ShakeOut Earthquake Scenario
                        
                    
    
            Abstract The ShakeOut scenario of an M 7.8 northwestward rupture on the southern San Andreas fault (SSAF) (Jones et al., 2008) predicted significant long-period ground-motion amplification in the greater Los Angeles, California, area, caused by a waveguide from interconnected sedimentary basins. However, the early ShakeOut ground-motion simulations omitted important model features with immature versions of the velocity structure and fault geometry. Here, we present 0–1 Hz 3D numerical wave propagation simulations for the ShakeOut scenario including surface topography, as well as updated high-resolution velocity structures and SSAF geometry. Spectral accelerations at 3 s are increased by the local high-resolution basin models (25%–45%) but decreased from complexity in velocity and density updates outside the basins (65%–100%) and inclusion of surface topography (∼30%). The updated model reduces the simulated long-period ground motions in the waveguide by 60%–70%, bringing the predictions significantly closer to the values by a leading Next Generation Attenuation-West2 ground-motion model. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2225216
- PAR ID:
- 10610284
- Publisher / Repository:
- Seismological Research Letters
- Date Published:
- Journal Name:
- Seismological Research Letters
- Volume:
- 96
- Issue:
- 2A
- ISSN:
- 0895-0695
- Page Range / eLocation ID:
- 1061 to 1072
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT We simulate shaking in Tacoma, Washington, and surrounding areas from Mw 6.5 and 7.0 earthquakes on the Tacoma fault. Ground motions are directly modeled up to 2.5 Hz using kinematic, finite-fault sources; a 3D seismic velocity model considering regional geology; and a model mesh with 30 m sampling at the ground surface. In addition, we explore how adjustments to the seismic velocity model affect predicted shaking over a range of periods. These adjustments include the addition of a region-specific geotechnical gradient, surface topography, and a fault damage zone. We find that the simulated shaking tends to be near estimates from empirical ground-motion models (GMMs). However, long-period (T = 5.0 s) shaking within the Tacoma basin is typically underpredicted by the GMMs. The fit between simulated and GMM-derived short-period (T = 0.5 s) shaking is significantly improved with the addition of the geotechnical gradient. From comparing different Mw 6.5 earthquake scenarios, we also find that the response of the Tacoma basin is sensitive to the azimuth of incoming seismic waves. In adding surface topography to the simulation, we find that average ground motion is similar to that produced from the nontopography model. However, shaking is often amplified at topographic highs and deamplified at topographic lows, and the wavefield undergoes extensive scattering. Adding a fault damage zone has the effect of amplifying short-period shaking adjacent to the fault, while reducing far-field shaking. Intermediate-period shaking is amplified within the Tacoma basin, likely due to enhanced surface-wave generation attributable to the fault damage zone waveguide. When applied in the same model, the topography and fault damage zone adjustments often enhance or reduce the effects of one another, adding further complexity to the wavefield. These results emphasize the importance of improving near-surface velocity model resolution as waveform simulations progress toward higher frequencies.more » « less
- 
            ABSTRACT We have implemented and verified a parallel-series Iwan-type nonlinear model in a 3D fourth-order staggered-grid velocity–stress finite-difference method. The Masing unloading and reloading behavior is simulated by tracking an overlay of concentric von Mises yield surfaces. Lamé parameters and failure stresses pertaining to each surface are calibrated to reproduce the stress–strain backbone curve, which is controlled by the reference strain assigned to a given depth level. The implementation is successfully verified against established codes for 1D and 2D SH-wave benchmarks. The capabilities of the method for large-scale nonlinear earthquake modeling are demonstrated for an Mw 7.8 dynamic rupture ShakeOut scenario on the southern San Andreas fault. Although ShakeOut simulations with a single yield surface reduces long-period ground-motion amplitudes by about 25% inside a waveguide in greater Los Angeles, Iwan nonlinearity further reduces the values by a factor of 2. For example, inside the Whittier Narrows corridor spectral accelerations at a period of 3 s are reduced from 1g in the linear case to about 0.8 in the bilinear case and to 0.3–0.4g in the multisurface Iwan nonlinear case, depending on the choice of reference strain. Normalized shear modulus reductions reach values of up to 50% in the waveguide and up to 75% in the San Bernardino basin at the San Andreas fault. We expect the implementation to be a valuable tool for future nonlinear 3D dynamic rupture and ground-motion simulations in models with coupled source, path, and site effects.more » « less
- 
            ABSTRACT We explore the response of ground motions to topography during large crustal fault earthquakes by simulating several magnitude 6.5–7.0 rupture scenarios on the Seattle fault, Washington State. Kinematic simulations are run using a 3D spectral element code and a detailed seismic velocity model for the Puget Sound region. This model includes realistic surface topography and a near-surface low-velocity layer; a mesh spacing of ∼30 m at the surface allows modeling of ground motions up to 3 Hz. We simulate 20 earthquake scenarios using different slip distributions and hypocenter locations on a planar fault surface. Results indicate that average ground motions in simulations with and without topography are similar. However, shaking amplification is common at topographic highs, and more than a quarter of all sites experience short-period (≤2 s) ground-motion amplification greater than 25%–35%, compared with models without topography. Comparisons of peak ground velocity at the top and bottom of topographic features demonstrate that amplification is sensitive to period, with the greatest amplifications typically manifesting near a topographic feature’s estimated resonance frequency and along azimuths perpendicular to its primary axis of elongation. However, interevent variability in topographic response can be significant, particularly at shorter periods (<1 s). We do not observe a clear relationship between source centroid-to-site azimuths and the strength of topographic amplification. Overall, our results suggest that although topographic resonance does influence the average ground motions, other processes (e.g., localized focusing and scattering) also play a significant role in determining topographic response. However, the amount of consistent, significant amplification due to topography suggests that topographic effects should likely be considered in some capacity during seismic hazard studies.more » « less
- 
            Abstract Near‐surface seismic velocity structure plays a critical role in ground motion amplification during large earthquakes. In particular, the local Vp/Vs ratio strongly influences the amplitude of Rayleigh waves. Previous studies have separately imaged 3D seismic velocity and Vp/Vs ratio at seismogenic depth, but lack regional coverage and/or fail to constrain the shallowest structure. Here, we combine three datasets with complementary sensitivity in a Bayesian joint inversion for shallow crustal shear velocity and near‐surface Vp/Vs ratio across Southern California. Receiver functions–including with an apparent delayed initial peak in sedimentary basins, and long considered a nuisance in receiver function imaging studies–highly correlate with short‐period Rayleigh wave ellipticity measurements and require the inclusion of a Vp/Vs parameter. The updated model includes near‐surface low shear velocity more in line with geotechnical layer estimates, and generally lower than expected Vp/Vs outside the basins suggesting widespread shallow fracturing and/or groundwater undersaturation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    