skip to main content


Title: Inter-provincial disparity of COVID-19 transmission and control in Nepal
Abstract Despite the global efforts to mitigate the ongoing COVID-19 pandemic, the disease transmission and the effective controls still remain uncertain as the outcome of the epidemic varies from place to place. In this regard, the province-wise data from Nepal provides a unique opportunity to study the effective control strategies. This is because (a) some provinces of Nepal share an open-border with India, resulting in a significantly high inflow of COVID-19 cases from India; (b) despite the inflow of a considerable number of cases, the local spread was quite controlled until mid-June of 2020, presumably due to control policies implemented; and (c) the relaxation of policies caused a rapid surge of the COVID-19 cases, providing a multi-phasic trend of disease dynamics. In this study, we used this unique data set to explore the inter-provincial disparities of the important indicators, such as epidemic trend, epidemic growth rate, and reproduction numbers. Furthermore, we extended our analysis to identify prevention and control policies that are effective in altering these indicators. Our analysis identified a noticeable inter-province variation in the epidemic trend (3 per day to 104 per day linear increase during third surge period), the median daily growth rate (1 to 4% per day exponential growth), the basic reproduction number (0.71 to 1.21), and the effective reproduction number (maximum values ranging from 1.20 to 2.86). Importantly, results from our modeling show that the type and number of control strategies that are effective in altering the indicators vary among provinces, underscoring the need for province-focused strategies along with the national-level strategy in order to ensure the control of a local spread.  more » « less
Award ID(s):
2030479 1951793 1836647 1616299
NSF-PAR ID:
10292347
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the significant progress in the development of vaccines, the COVID-19 pandemic still poses difficulty for its control because of many obstacles such as the proper implementation of vaccination, public hesitancy towards vaccines, dropping out from the second dose, and varying level of protection after the first and the second doses. In this study, we develop a novel mathematical model of COVID-19 transmission, including two separate vaccinated compartments (first dose and both doses). We parametrize and validate our model using data from Dougherty county of Georgia, USA, one of the most affected counties, where the transmission trend clearly is associated with various policies and public events. We analyze our model for stability of equilibria and persistence of the disease, and formulate expression for reproduction numbers. We estimate that the basic reproduction number in Dougherty county is 1.69, and the effective reproduction number during the study period ranges from 0.26 to 6.36. The number of daily undiagnosed cases peaked at 310 per day, resulting in the maximum number of active infectious individuals to be 2471. Our model predicts that in a high transmission scenario, the vaccination strategies should be combined with other non-pharmaceutical prevention strategies to ensure transmission control. Moreover, our results emphasize that completing both doses of vaccines on time is critical to achieve maximum benefits from the vaccination programs. 
    more » « less
  2. Borri, Alessandro (Ed.)
    Ever since the outbreak of the COVID-19 epidemic, various public health control strategies have been proposed and tested against the coronavirus SARS-CoV-2. We study three specific COVID-19 epidemic control models: the susceptible, exposed, infectious, recovered (SEIR) model with vaccination control; the SEIR model with shield immunity control; and the susceptible, un-quarantined infected, quarantined infected, confirmed infected (SUQC) model with quarantine control. We express the control requirement in metric temporal logic (MTL) formulas (a type of formal specification languages) which can specify the expected control outcomes such as “ the deaths from the infection should never exceed one thousand per day within the next three months ” or “ the population immune from the disease should eventually exceed 200 thousand within the next 100 to 120 days ”. We then develop methods for synthesizing control strategies with MTL specifications. To the best of our knowledge, this is the first paper to systematically synthesize control strategies based on the COVID-19 epidemic models with formal specifications. We provide simulation results in three different case studies: vaccination control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; shield immunity control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; and quarantine control for the COVID-19 epidemic with model parameters estimated from data in Wuhan, China. The results show that the proposed synthesis approach can generate control inputs such that the time-varying numbers of individuals in each category (e.g., infectious, immune) satisfy the MTL specifications. The results also show that early intervention is essential in mitigating the spread of COVID-19, and more control effort is needed for more stringent MTL specifications. For example, based on the model in Lombardy, Italy, achieving less than 100 deaths per day and 10000 total deaths within 100 days requires 441.7% more vaccination control effort than achieving less than 1000 deaths per day and 50000 total deaths within 100 days. 
    more » « less
  3. The estimates of contiguousness parameters of an epidemic have been used for health-related policy and control measures such as non-pharmaceutical control interventions (NPIs). The estimates have varied by demographics, epidemic phase, and geographical region. Our aim was to estimate four contagiousness parameters: basic reproduction number ( R 0 ), contact rate, removal rate, and infectious period of coronavirus disease 2019 (COVID-19) among eight African countries, namely Angola, Botswana, Egypt, Ethiopia, Malawi, Nigeria, South Africa, and Tunisia using Susceptible, Infectious, or Recovered (SIR) epidemic models for the period 1 January 2020 to 31 December 2021. For reference, we also estimated these parameters for three of COVID-19's most severely affected countries: Brazil, India, and the USA. The basic reproduction number, contact and remove rates, and infectious period ranged from 1.11 to 1.59, 0.53 to 1.0, 0.39 to 0.81; and 1.23 to 2.59 for the eight African countries. For the USA, Brazil, and India these were 1.94, 0.66, 0.34, and 2.94; 1.62, 0.62, 0.38, and 2.62, and 1.55, 0.61, 0.39, and 2.55, respectively. The average COVID-19 related case fatality rate for 8 African countries in this study was estimated to be 2.86%. Contact and removal rates among an affected African population were positively and significantly associated with COVID-19 related deaths ( p -value < 0.003). The larger than one estimates of the basic reproductive number in the studies of African countries indicate that COVID-19 was still being transmitted exponentially by the 31 December 2021, though at different rates. The spread was even higher for the three countries with substantial COVID-19 outbreaks. The lower removal rates in the USA, Brazil, and India could be indicative of lower death rates (a proxy for good health systems). Our findings of variation in the estimate of COVID-19 contagiousness parameters imply that countries in the region may implement differential COVID-19 containment measures. 
    more » « less
  4. Adrish, Muhammad (Ed.)
    Mexico has experienced one of the highest COVID-19 mortality rates in the world. A delayed implementation of social distancing interventions in late March 2020 and a phased reopening of the country in June 2020 has facilitated sustained disease transmission in the region. In this study we systematically generate and compare 30-day ahead forecasts using previously validated growth models based on mortality trends from the Institute for Health Metrics and Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate reproduction numbers for SARS-CoV-2 based on the methods that rely on genomic data as well as case incidence data. Subsequently, functional data analysis techniques are utilized to analyze the shapes of COVID-19 growth rate curves at the state level to characterize the spatiotemporal transmission patterns of SARS-CoV-2. The early estimates of the reproduction number for Mexico were estimated between R t ~1.1–1.3 from the genomic and case incidence data. Moreover, the mean estimate of R t has fluctuated around ~1.0 from late July till end of September 2020. The spatial analysis characterizes the state-level dynamics of COVID-19 into four groups with distinct epidemic trajectories based on epidemic growth rates. Our results show that the sequential mortality forecasts from the GLM and Richards model predict a downward trend in the number of deaths for all thirteen forecast periods for Mexico and Mexico City. However, the sub-epidemic and IHME models perform better predicting a more realistic stable trajectory of COVID-19 mortality trends for the last three forecast periods (09/21-10/21, 09/28-10/27, 09/28-10/27) for Mexico and Mexico City. Our findings indicate that phenomenological models are useful tools for short-term epidemic forecasting albeit forecasts need to be interpreted with caution given the dynamic implementation and lifting of social distancing measures. 
    more » « less
  5. Wu, Joseph T. (Ed.)
    Colombia announced the first case of severe acute respiratory syndrome coronavirus 2 on March 6, 2020. Since then, the country has reported a total of 5,002,387 cases and 127,258 deaths as of October 31, 2021. The aggressive transmission dynamics of SARS-CoV-2 motivate an investigation of COVID-19 at the national and regional levels in Colombia. We utilize the case incidence and mortality data to estimate the transmission potential and generate short-term forecasts of the COVID-19 pandemic to inform the public health policies using previously validated mathematical models. The analysis is augmented by the examination of geographic heterogeneity of COVID-19 at the departmental level along with the investigation of mobility and social media trends. Overall, the national and regional reproduction numbers show sustained disease transmission during the early phase of the pandemic, exhibiting sub-exponential growth dynamics. Whereas the most recent estimates of reproduction number indicate disease containment, with R t <1.0 as of October 31, 2021. On the forecasting front, the sub-epidemic model performs best at capturing the 30-day ahead COVID-19 trajectory compared to the Richards and generalized logistic growth model. Nevertheless, the spatial variability in the incidence rate patterns across different departments can be grouped into four distinct clusters. As the case incidence surged in July 2020, an increase in mobility patterns was also observed. On the contrary, a spike in the number of tweets indicating the stay-at-home orders was observed in November 2020 when the case incidence had already plateaued, indicating the pandemic fatigue in the country. 
    more » « less