skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inter-Country COVID-19 Contagiousness Variation in Eight African Countries
The estimates of contiguousness parameters of an epidemic have been used for health-related policy and control measures such as non-pharmaceutical control interventions (NPIs). The estimates have varied by demographics, epidemic phase, and geographical region. Our aim was to estimate four contagiousness parameters: basic reproduction number ( R 0 ), contact rate, removal rate, and infectious period of coronavirus disease 2019 (COVID-19) among eight African countries, namely Angola, Botswana, Egypt, Ethiopia, Malawi, Nigeria, South Africa, and Tunisia using Susceptible, Infectious, or Recovered (SIR) epidemic models for the period 1 January 2020 to 31 December 2021. For reference, we also estimated these parameters for three of COVID-19's most severely affected countries: Brazil, India, and the USA. The basic reproduction number, contact and remove rates, and infectious period ranged from 1.11 to 1.59, 0.53 to 1.0, 0.39 to 0.81; and 1.23 to 2.59 for the eight African countries. For the USA, Brazil, and India these were 1.94, 0.66, 0.34, and 2.94; 1.62, 0.62, 0.38, and 2.62, and 1.55, 0.61, 0.39, and 2.55, respectively. The average COVID-19 related case fatality rate for 8 African countries in this study was estimated to be 2.86%. Contact and removal rates among an affected African population were positively and significantly associated with COVID-19 related deaths ( p -value < 0.003). The larger than one estimates of the basic reproductive number in the studies of African countries indicate that COVID-19 was still being transmitted exponentially by the 31 December 2021, though at different rates. The spread was even higher for the three countries with substantial COVID-19 outbreaks. The lower removal rates in the USA, Brazil, and India could be indicative of lower death rates (a proxy for good health systems). Our findings of variation in the estimate of COVID-19 contagiousness parameters imply that countries in the region may implement differential COVID-19 containment measures.  more » « less
Award ID(s):
2015425
PAR ID:
10332959
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Public Health
Volume:
10
ISSN:
2296-2565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Despite the global efforts to mitigate the ongoing COVID-19 pandemic, the disease transmission and the effective controls still remain uncertain as the outcome of the epidemic varies from place to place. In this regard, the province-wise data from Nepal provides a unique opportunity to study the effective control strategies. This is because (a) some provinces of Nepal share an open-border with India, resulting in a significantly high inflow of COVID-19 cases from India; (b) despite the inflow of a considerable number of cases, the local spread was quite controlled until mid-June of 2020, presumably due to control policies implemented; and (c) the relaxation of policies caused a rapid surge of the COVID-19 cases, providing a multi-phasic trend of disease dynamics. In this study, we used this unique data set to explore the inter-provincial disparities of the important indicators, such as epidemic trend, epidemic growth rate, and reproduction numbers. Furthermore, we extended our analysis to identify prevention and control policies that are effective in altering these indicators. Our analysis identified a noticeable inter-province variation in the epidemic trend (3 per day to 104 per day linear increase during third surge period), the median daily growth rate (1 to 4% per day exponential growth), the basic reproduction number (0.71 to 1.21), and the effective reproduction number (maximum values ranging from 1.20 to 2.86). Importantly, results from our modeling show that the type and number of control strategies that are effective in altering the indicators vary among provinces, underscoring the need for province-focused strategies along with the national-level strategy in order to ensure the control of a local spread. 
    more » « less
  2. Each state in the USA exhibited a unique response to the COVID-19 outbreak, along with variable levels of testing, leading to different actual case burdens in the country. In this study, via per capita testing dependent ascertainment rates, along with case and death data, we fit a minimal epidemic model for each state. We estimate infection-level responsive lockdown/self-quarantine entry and exit rates (representing government and behavioural reaction), along with the true number of cases as of 31 May 2020. Ultimately, we provide error-corrected estimates for commonly used metrics such as infection fatality ratio and overall case ascertainment for all 55 states and territories considered, along with the USA in aggregate, in order to correlate outbreak severity with first wave intervention attributes and suggest potential management strategies for future outbreaks. We observe a theoretically predicted inverse proportionality relation between outbreak size and lockdown rate, with scale dependent on the underlying reproduction number and simulations suggesting a critical population quarantine ‘half-life’ of 30 days independent of other model parameters. 
    more » « less
  3. Aboelhadid, Shawky M (Ed.)
    The COVID-19 pandemic has caused over 500 million cases and over six million deaths globally. From these numbers, over 12 million cases and over 250 thousand deaths have occurred on the African continent as of May 2022. Prevention and surveillance remains the cornerstone of interventions to halt the further spread of COVID-19. Google Health Trends (GHT), a free Internet tool, may be valuable to help anticipate outbreaks, identify disease hotspots, or understand the patterns of disease surveillance. We collected COVID-19 case and death incidence for 54 African countries and obtained averages for four, five-month study periods in 2020–2021. Average case and death incidences were calculated during these four time periods to measure disease severity. We used GHT to characterize COVID-19 incidence across Africa, collecting numbers of searches from GHT related to COVID-19 using four terms: ‘coronavirus’, ‘coronavirus symptoms’, ‘COVID19’, and ‘pandemic’. The terms were related to weekly COVID-19 case incidences for the entire study period via multiple linear and weighted linear regression analyses. We also assembled 72 variables assessing Internet accessibility, demographics, economics, health, and others, for each country, to summarize potential mechanisms linking GHT searches and COVID-19 incidence. COVID-19 burden in Africa increased steadily during the study period. Important increases for COVID-19 death incidence were observed for Seychelles and Tunisia. Our study demonstrated a weak correlation between GHT and COVID-19 incidence for most African countries. Several variables seemed useful in explaining the pattern of GHT statistics and their relationship to COVID-19 including: log of average weekly cases, log of cumulative total deaths, and log of fixed total number of broadband subscriptions in a country. Apparently, GHT may best be used for surveillance of diseases that are diagnosed more consistently. Overall, GHT-based surveillance showed little applicability in the studied countries. GHT for an ongoing epidemic might be useful in specific situations, such as when countries have significant levels of infection with low variability. Future studies might assess the algorithm in different epidemic contexts. 
    more » « less
  4. Abstract The estimation of unknown parameters in simulations, also known as calibration, is crucial for practical management of epidemics and prediction of pandemic risk. A simple yet widely used approach is to estimate the parameters by minimising the sum of the squared distances between actual observations and simulation outputs. It is shown in this paper that this method is inefficient, particularly when the epidemic models are developed based on certain simplifications of reality, also known as imperfect models which are commonly used in practice. To address this issue, a new estimator is introduced that is asymptotically consistent, has a smaller estimation variance than the least-squares estimator, and achieves the semiparametric efficiency. Numerical studies are performed to examine the finite sample performance. The proposed method is applied to the analysis of the COVID-19 pandemic for 20 countries based on the susceptible-exposed-infectious-recovered model with both deterministic and stochastic simulations. The estimation of the parameters, including the basic reproduction number and the average incubation period, reveal the risk of disease outbreaks in each country and provide insights to the design of public health interventions. 
    more » « less
  5. Britton, Tom (Ed.)
    During pandemics, countries, regions, and communities develop various epidemic models to evaluate spread and guide mitigation policies. However, model uncertainties caused by complex transmission behaviors, contact-tracing networks, time-varying parameters, human factors, and limited data present significant challenges to model-based approaches. To address these issues, we propose a novel framework that centers around reproduction number estimates to perform counterfactual analysis, strategy evaluation, and feedback control of epidemics. The framework 1) introduces a mechanism to quantify the impact of the testing-for-isolation intervention strategy on the basic reproduction number. Building on this mechanism, the framework 2) proposes a method to reverse engineer the effective reproduction number under different strengths of the intervention strategy. In addition, based on the method that quantifies the impact of the testing-for-isolation strategy on the basic reproduction number, the framework 3) proposes a closed-loop control algorithm that uses the effective reproduction number both as feedback to indicate the severity of the spread and as the control goal to guide adjustments in the intensity of the intervention. We illustrate the framework, along with its three core methods, by addressing three key questions and validating its effectiveness using data collected during the COVID-19 pandemic at the University of Illinois Urbana-Champaign (UIUC) and Purdue University: 1) How severe would an outbreak have been without the implemented intervention strategies? 2) What impact would varying the intervention strength have had on an outbreak? 3) How can we adjust the intervention intensity based on the current state of an outbreak? 
    more » « less