skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The morphology, evolution and seismic visibility of partial melt at the core-mantle boundary: Implications for ULVZs
Seismic observations indicate that the lowermost mantle above the core-mantle boundary is strongly heterogeneous. Body waves reveal a variety of ultra-low velocity zones (ULVZs), which extend not more than 100 km above the core-mantle boundary and have shear velocity reductions of up to 30 per cent. While the nature and origin of these ULVZs remain uncertain, some have suggested they are evidence of partial melting at the base of mantle plumes. Here we use coupled geodynamic/thermodynamic modelling to explore the hypothesis that present-day deep mantle melting creates ULVZs and introduces compositional heterogeneity in the mantle. Our models explore the generation and migration of melt in a deforming and compacting host rock at the base of a plume in the lowermost mantle. We test whether the balance of gravitational and viscous forces can generate partially molten zones that are consistent with the seismic observations. We find that for a wide range of plausible melt densities, permeabilities and viscosities, lower mantle melt is too dense to be stirred into convective flow and instead sinks down to form a completely molten layer, which is inconsistent with observations of ULVZs. Only if melt is less dense or at most ca. 1 per cent more dense than the solid, or if melt pockets are trapped within the solid, can melt remain suspended in the partial melt zone. In these cases, seismic velocities would be reduced in a cone at the base of the plume. Generally, we find partial melt alone does not explain the observed ULVZ morphologies and solid-state compositional variation is required to explain the anomalies. Our findings provide a framework for testing whether seismically observed ULVZ shapes are consistent with a partial melt origin, which is an important step towards constraining the nature of the heterogeneities in the lowermost mantle and their influence on the thermal, compositional, and dynamical evolution of the Earth.  more » « less
Award ID(s):
1925677
PAR ID:
10292368
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
227
Issue:
2
ISSN:
0956-540X
Page Range / eLocation ID:
1028–1059
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ultra‐low velocity zones (ULVZs) are anomalous structures, generally associated with decreased seismic velocity and sometimes an increase in density, that have been detected in some locations atop the Earth's core‐mantle boundary (CMB). A wide range of ULVZ characteristics have been reported by previous studies, leading to many questions regarding their origins. The lowermost mantle beneath Antarctica and surrounding areas is not located near currently active regions of mantle upwelling or downwelling, making it a unique environment in which to study the sources of ULVZs; however, seismic sampling of this portion of the CMB has been sparse. Here, we examine core‐reflected PcP waveforms recorded by seismic stations across Antarctica using a double‐array stacking technique to further elucidate ULVZ structure beneath the southern hemisphere. Our results show widespread, variable ULVZs, some of which can be robustly modeled with 1‐D synthetics; however, others are more complex, which may reflect 2‐D or 3‐D ULVZ structure and/or ULVZs with internal velocity variability. Our findings are consistent with the concept that ULVZs can be largely explained by variable accumulations of subducted oceanic crust along the CMB. Partial melting of subducted crust and other, hydrous subducted materials may also contribute to ULVZ variability. 
    more » « less
  2. Ultra-low velocity zones (ULVZs) are thin anomalous patches on the boundary between the Earth's core and mantle, revealed by their effects on the seismic waves that propagate through them. Here we map a broad ULVZ near the Galápagos hotspot using shear-diffracted waves. Forward modelling assuming a cylindrical shape shows the patch is ~600 km wide, ~20 km high, and its shear velocities are ~25% reduced. The ULVZ is comparable to other broad ULVZs mapped on the core-mantle boundary near Hawaii, Iceland, and Samoa.  Strikingly, all four hotspots where the mantle plume appears rooted by these ‘mega-ULVZs’, show similar anomalous isotopic signatures in He, Ne, and W in their ocean island basalts. This correlation suggests mega-ULVZs might be primordial or caused by interaction with the core, and some material from ULVZs is entrained within the plume. For the Galápagos, the connection implies the plume is offset to the west towards the base of the mantle. 
    more » « less
  3. Abstract We investigate broadband SPdKS waveforms from earthquakes occurring beneath Myanmar. These paths sample the core–mantle boundary beneath northwestern China. Waveform modeling shows that two ∼250 × 250 km wide ultra-low velocity zones (ULVZs) with a thickness of roughly 10 km exist in the region. The ULVZ models fitting these data have large S-wave velocity drops of 55% but relatively small 14% P-wave velocity reductions. This is almost a 4:1 S- to P-wave velocity ratio and is suggestive of a partial melt origin. These ULVZs exist in a region of the Circum-Pacific with a long history of subduction and far from large low-velocity province (LLVP) boundaries where ULVZs are more commonly observed. It is possible that these ULVZs are generated by partial melting of mid-ocean ridge basalt. 
    more » « less
  4. Qualitative and quantitative analysis of seismic waveforms sensitive to the core–mantle boundary (CMB) region reveal the presence of ultralow-velocity zones (ULVZs) that have a strong decrease in compressional (P) and shear (S) wave velocity, and an increase in density within thin structures. However, understanding their physical origin and relation to the other large-scale structures in the lowermost mantle are limited due to an incomplete mapping of ULVZs at the CMB. The SKS and SPdKS seismic waveforms is routinely used to infer ULVZ presence, but has thus far only been used in a limited epicentral distance range. As the SKS/SPdKS wavefield interacts with a ULVZ it generates additional seismic arrivals, thus increasing the complexity of the recorded wavefield. Here, we explore utilization of the multi-scale sample entropy method to search for ULVZ structures. We investigate the feasibility of this approach through analysis of synthetic seismograms computed for PREM, 1-, 2.5-, and 3-D ULVZs as well as heterogeneous structures with a strong increase in velocity in the lowermost mantle in 1- and 2.5-D. We find that the sample entropy technique may be useful across a wide range of epicentral distances from 100° to 130°. Such an analysis, when applied to real waveforms, could provide coverage of roughly 85% by surface area of the CMB. 
    more » « less
  5. Ultralow-velocity zones (ULVZs) at the core–mantle boundary (CMB) represent some of the most preternatural features in Earth’s mantle. These zones most likely contain partial melt, extremely high iron content ferropericlase, or combinations of both. We analyzed a new collection of 58,155 carefully processed and quality-controlled broadband recordings of the seismic phase SPdKS in the epicentral distance range from 106° to 115°. These data sample 56.9% of the CMB by surface area. From these recordings we searched for the most anomalous seismic waveforms that are indicative of ULVZ presence. We used a Bayesian approach to identify the regions of the CMB that have the highest probability of containing ULVZs, thereby identifying sixteen regions of interest. Of these regions, we corroborate well-known ULVZ existence beneath the South China Sea, southwest Pacific, the Samoa hotspot, the southwestern US/northern Mexico, and Iceland. We find good evidence for new ULVZs beneath North Africa, East Asia, and north of Papua New Guinea. We provide further evidence for ULVZs in regions where some evidence has been hinted at before beneath the Philippine Sea, the Pacific Northwest, and the Amazon Basin. Additional evidence is shown for potential ULVZs at the base of the Caroline, San Felix and Galapagos hotspots. 
    more » « less