Abstract During space weather events, a large amount of energy and momentum from the solar wind inputs into the ionosphere‐thermosphere. A critical question is that if the solar wind‐magnetosphere interaction drives only the open field region in the polar caps, how the solar wind energy and momentum are transmitted to the low latitude and equatorial ionosphere. This important issue has been studied over decades and is still poorly understood, impeding space weather forecasting ability. Here we use our newly developed 2.5‐D ionosphere‐thermosphere simulation model that self‐consistently solves the density, velocity, and temperature for electrons, multiple ion and neutral species, and electromagnetic fields to study this challenging problem. The focus of the present study is on the prompt response of the ionosphere to a convection disturbance from the polar magnetosphere. The longer time scale responses caused by the neutral winds from the polar caps will be the topic of future studies. We show that the momentum is transferred from polar to equatorial ionosphere predominately by fast magnetosonic waves, and propagation of perturbations from the source region experiences delay, damping, and substantial reflection, and the ionosphere/thermosphere behaves like a low‐band‐pass filter. The finding from this study sheds new insight onto coupling processes within the magnetosphere‐ionosphere system.
more »
« less
Spectral correction of turbulent energy damping on wind LiDAR measurements due to range-gate averaging
Continuous advancements in LiDAR technology have enabled compelling wind turbulence measurements within the atmospheric boundary layer with range gates shorter than 20 m and sampling frequency of the order of 10 Hz. However, estimates of the radial velocity from the back-scattered laser beam are inevitably affected by an averaging process within each range gate, generally modeled as a convolution between the actual velocity projected along the LiDAR line-of-sight and a weighting function representing the energy distribution of the laser pulse along the range gate. As a result, the spectral energy of the turbulent velocity fluctuations is damped within the inertial sub-range with respective reduction of the velocity variance, and, thus, not allowing to take advantage of the achieved spatio-temporal resolution of the LiDAR technology. In this article, we propose to correct this turbulent energy damping on the LiDAR measurements by reversing the effect of a low-pass filter, which can be estimated directly from the LiDAR measurements. LiDAR data acquired from three different field campaigns are analyzed to describe the proposed technique, investigate the variability of the filter parameters and, for one dataset, assess the procedure for spectral LiDAR correction against sonic anemometer data. It is found that the order of the low-pass filter used for modeling the energy damping on the LiDAR velocity measurements has negligible effects on the correction of the second-order statistics of the wind velocity. In contrast, its cutoff frequency plays a significant role in the spectral correction encompassing the smoothing effects connected with the LiDAR gate length.
more »
« less
- Award ID(s):
- 1705837
- PAR ID:
- 10292423
- Date Published:
- Journal Name:
- Atmospheric measurement techniques
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 1867-1381
- Page Range / eLocation ID:
- 1457-1474
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a Multiplicative Extended Kalman Filter (MEKF) framework using a state-of-the-art velocimeter Light Detection and Ranging (LIDAR) sensor for Terrain Relative Navigation (TRN) applications. The newly developed velocimeter LIDAR is capable of providing simultaneous position, Doppler velocity, and reflectivity measurements for every point in the point cloud. This information, along with pseudo-measurements from point cloud registration techniques, a novel bulk velocity batch state estimation process and inertial measurement data, is fused within a traditional Kalman filter architecture. Results from extensive emulation robotics experiments performed at Texas A&M’s Land, Air, and Space Robotics (LASR) laboratory and Monte Carlo simulations are presented to evaluate the efficacy of the proposed algorithms.more » « less
-
null (Ed.)Abstract. The LiDAR Statistical Barnes Objective Analysis (LiSBOA), presented in Letizia et al. (2021), is a procedure for the optimal design of lidar scans and calculations over a Cartesian grid of the statistical moments of the velocity field. Lidar data collected during a field campaign conducted at a wind farm in complex terrain are analyzed through LiSBOA for two different tests. For both case studies, LiSBOA is leveraged for the optimization of the azimuthal step of the lidar and the retrieval of the mean equivalent velocity and turbulence intensity fields. In the first case, the wake velocity statistics of four utility-scale turbines are reconstructed on a 3D grid, showing LiSBOA's ability to capture complex flow features, such as high-speed jets around the nacelle and the wake turbulent-shear layers. For the second case, the statistics of the wakes generated by four interacting turbines are calculated over a 2D Cartesian grid and compared to the measurements provided by the nacelle-mounted anemometers. Maximum discrepancies, as low as 3 % for the mean velocity (with respect to the free stream velocity) and turbulence intensity (in absolute terms), endorse the application of LiSBOA for lidar-based wind resource assessment and diagnostic surveys for wind farms.more » « less
-
This experimental study focuses on fluid-structure interaction (FSI) for a thin compliant panel under a shock/boundary layer interaction (SBLI) generated by a 2D compression ramp in a Mach 2 wind tunnel. In previous work, we have studied the FSI for this configuration using simultaneous fast-response pressure-sensitive paint (PSP) and digital image correlation (DIC). Simultaneous PSP/DIC allows for examination of the relationship between the dynamic panel displacement and surface pressure loading, respectively. Spectral analysis showed that pressure fluctuations within the interaction region and shock-foot unsteadiness tend to lock to the first mode resonant frequency of the compliant panel. The current study aims to utilize synchronous high-speed stereoscopic PIV (25 kHz) and DIC (5 kHz) techniques to better understand the coupling between the flow field and the panel displacement field. The PIV is obtained in a streamwise-spanwise plane located at 15% of the boundary layer height. Thin compliant polycarbonate panel with thicknesses of 1 mm is utilized, which has a first-mode vibrational frequency of 407 Hz. The 1 mm panel out-of-plane displacement amplitude was up to 15% of the boundary layer thickness. The analysis includes low-pass and band-pass filtering of the velocity data, including the surrogate separation line, and cross-correlation analysis between panel displacement and velocity. The results indicate a clear coupling of the panel motion and velocity field, but the spectral analysis suffers from limited time records associated with the pulse-burst laser used for PIV. Future work will focus on collecting more data to improve the statistical convergence of the results.more » « less
-
Abstract Micropulse differential absorption lidar (MPD) for water vapor, temperature, and aerosol profiling have been developed, demonstrated, and are addressing the needs of the atmospheric science community for low-cost ground-based networkable instruments capable of long-term monitoring of the lower troposphere. The MPD instruments use a diode-laser-based (DLB) architecture that can easily be adapted for a wide range of applications. In this study, a DLB direct detection Doppler lidar based on the current MPD architecture is modeled to better understand the efficacy of the instrument for vertical wind velocity measurements with the long-term goal of incorporating these measurements into the current network of MPD instruments. The direct detection Doppler lidar is based on a double-edge receiver that utilizes two Fabry-Perot interferometers and a vertical velocity retrieval that requires the ancillary measurement of the backscatter ratio, which is the ratio of the total backscatter coefficient to the molecular backscatter coefficient. The modeling in this paper accounts for the major sources of error. It indicates that the vertical velocity can be retrieved with an error of less than 0.56 m s −1 below 4 km with a 150-m range resolution and an averaging time of five minutes.more » « less
An official website of the United States government

