skip to main content


Title: On the Momentum Transfer From Polar to Equatorial Ionosphere
Abstract

During space weather events, a large amount of energy and momentum from the solar wind inputs into the ionosphere‐thermosphere. A critical question is that if the solar wind‐magnetosphere interaction drives only the open field region in the polar caps, how the solar wind energy and momentum are transmitted to the low latitude and equatorial ionosphere. This important issue has been studied over decades and is still poorly understood, impeding space weather forecasting ability. Here we use our newly developed 2.5‐D ionosphere‐thermosphere simulation model that self‐consistently solves the density, velocity, and temperature for electrons, multiple ion and neutral species, and electromagnetic fields to study this challenging problem. The focus of the present study is on the prompt response of the ionosphere to a convection disturbance from the polar magnetosphere. The longer time scale responses caused by the neutral winds from the polar caps will be the topic of future studies. We show that the momentum is transferred from polar to equatorial ionosphere predominately by fast magnetosonic waves, and propagation of perturbations from the source region experiences delay, damping, and substantial reflection, and the ionosphere/thermosphere behaves like a low‐band‐pass filter. The finding from this study sheds new insight onto coupling processes within the magnetosphere‐ionosphere system.

 
more » « less
Award ID(s):
1702134
NSF-PAR ID:
10445708
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
7
ISSN:
2169-9380
Page Range / eLocation ID:
p. 6064-6073
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Subauroral Polarization Streams (SAPS) are associated with closure of region 2 field‐aligned current (R2 FAC) through the low conductivity region. Although SAPS have often been studied from a magnetosphere‐ionosphere coupling perspective, recent observations suggest strong interaction also exists between SAPS and the thermosphere. Our study focuses on thermospheric wind driving and its impact on SAPS and R2 FAC during the 17 March 2013 geomagnetic storm using both observations and the physics‐based Rice Convection Model‐Coupled Thermosphere, Ionosphere, Plasmasphere, electrodynamics (RCM‐CTIPe) model that self‐consistently couples the magnetosphere‐ionosphere‐thermosphere system. Defense Meteorological Satellite Program (DMSP)‐18 and Gravity Field and Steady‐State Ocean Circulation Explorer (GOCE) satellite observations show that, as the storm progresses, sunward ion flows intensify and expand equatorward and are accompanied by strengthening of subauroral neutral winds with some delay. Our model successfully reproduces time evolution and overall structure of the sunward ion drift and neutral wind. A force term analysis is performed to investigate the momentum transfer to the neutrals from the ions. Contrary to previous studies showing that Coriolis force is the main driver of neutrals during storm time, we find that the ion drag is the largest force driving westward neutral wind in the SAPS region where the ion density is low in the trough region. Furthermore, simulations with and without the neutral wind dynamo effect are compared to quantify the effect of the neutral to plasma flow. The comparison shows that the self‐consistent active ionosphere thermosphere coupling increases the R2 FAC and the westward ion drift equatorward of the SAPS region by 20% and 40% by the flywheel effect, respectively.

     
    more » « less
  2. Abstract

    In this paper, we present a case study of the radial interplanetary magnetic field (IMFBx)‐induced asymmetric solar wind‐magnetosphere‐ionosphere (SW‐M‐I) coupling between the northern and southern polar caps using ground‐based and satellite‐based data. Under prolonged conditions of strong earthward IMF on 5 March 2015, we find significant discrepancies between polar cap north (PCN) and polar cap south (PCS) magnetic indices with a negative bay‐like change in the PCN and a positive bay‐like change in the PCS. The difference between these indices (PCN‐PCS) reaches a minimum of −1.63 mV/m, which is approximately three times higher in absolute value than the values for most of the time on this day (within ±0.5 mV/m). The high‐latitude plasma convection also shows an asymmetric feature such that there exists an additional convection cell near the noon sector in the northern polar cap, but not in the southern polar cap. Meanwhile, negative bays in the north‐south component of ground magnetic field perturbations (less than 50 nT) observed in the nightside auroral region of the Northern Hemisphere are accompanied with the brightening and widening of the nightside auroral oval in the Southern Hemisphere, implying a weak, but clear energy transfer to the nightside ionosphere of both hemispheres. After the hemispheric asymmetries in the polar caps disappear, a substorm onset takes place. All these observations indicate that IMFBx‐induced single lobe reconnection that occurred in the Northern Hemisphere plays an important role in hemispheric asymmetry in the energy transfer from the solar wind to the polar cap through the magnetosphere.

     
    more » « less
  3. The Earth’s upper atmosphere (85–550 km) is the nearest region of geospace and is highly dynamic in nature. Neutral winds impact a large portion of the dynamics in this region. They play a critical role in determining the state of the ionosphere-thermosphere system at almost all latitudes and altitudes. Their influences range from wave breaking/dissipation in the mesosphere and lower thermosphere to global redistribution of energy and momentum deposited at high latitudes by the magnetosphere. Despite their known importance, global geospace neutral winds have remained one of the least sampled state parameters of the Earth’s upper atmosphere and are still poorly characterized even after multiple decades of observations. This paper presents an overview of historical neutral wind measurements and the critical need for their global height-resolved measurements. Some satellite missions are still operational and deliver valuable information on the contribution of neutral winds in global atmospheric dynamics. However, many significant gaps remain in their global monitoring, and our current understanding of the drivers of neutral winds is incomplete. We discuss the challenges posed by these measurement gaps in understanding geospace physics and weather. Further, we propose some wind observation solutions, including the simultaneous operations of upcoming NASA DYNAMIC and GDC missions as well as support for the development of ground-based observing methodologies, that will lead to fundamental advances in geospace science and address humanity’s emerging space needs. 
    more » « less
  4. Abstract

    We have taken a key step in evaluating the importance of ionospheric outflows relative to electrodynamic coupling in the thermosphere’s impact on geospace dynamics. We isolated the thermosphere’s material influence and suppressed electrodynamic feedback in whole geospace simulations by imposing a time‐constant ionospheric conductance in the ionospheric Ohm’s law in a coupled model that combines the multifluid Lyon‐Fedder‐Mobarry magnetosphere model with the Thermosphere Ionosphere Electrodynamic General Circulation Model and the Ionosphere Polar Wind Model that includes both polar wind and transversely accelerated ion species. Numerical experiments were conducted for different thermospheric states parameterized by F10.7 for interplanetary driving representative of the stream interaction region that swept past Earth on March 27, 2003. We demonstrate that thermosphere through its regulation of ionospheric outflows influences magnetosphere‐ionosphere (MI) convection and the ion composition, symmetries, x‐line perimeter and magnetic merging of the magnetosphere. Feedback to the ionosphere‐thermosphere from evolving MI convection, and Alfvénic Poynting fluxes and soft (∼few 100 eV) electron precipitation originating in the magnetosphere, in turn, modify the evolving O+outflow properties. The simulation results identify a variety of observed magnetospheric features that are attributable directly to the thermosphere’s material influence: Asymmetries in O+outflow fluxes and velocities in the pre/postnoon low‐altitude magnetosphere, dawn/duskside lobes and pre/postmidnight plasmasheet; O+distribution of the plasmasheet; magnetic x‐line location and reconnection rate along it. O+outflows during solar maximum conditions (high F10.7) tend to counteract the plasmasheet’s pre/postmidnight asymmetries caused by the night‐to‐day gradient in ionospheric Hall conductance.

     
    more » « less
  5. Abstract

    Ionospheric storm enhanced density (SED) has been extensively investigated using total electron content deduced from GPS ground and satellite‐borne receivers. However, dayside in situ electron density measurements have not been analyzed in detail for SEDs yet. We report in situ electron density measurements of a SED event in the Northern Hemisphere (NH) at the noon meridian plane measured by the Challenging Minisatellite Payload (CHAMP) polar‐orbiting satellite at about 390 km altitude during the 20 November 2003 magnetic storm. The CHAMP satellite measurements render rare documentation about the dayside SED's life cycle at a fixed magnetic local time (MLT) through multiple passes. Solar wind drivers triggered the SED onset and controlled its lifecycle through its growth and retreat phases. The SED electron density enhancement extended from the equatorial ionization anomaly to the noon cusp. The midlatitude electron density increased to a maximum at the end of the growth phase. Afterward, the dayside SED region retreated gradually to lower magnetic latitudes. The observations showed a hemisphere asymmetry, with the NH electron density exhibiting a more significant enhancement. The simulations using the Thermosphere Ionosphere Electrodynamic General Circulation model show a good agreement with the CHAMP observations. The simulations indicate that the dayside midlatitude electron density enhancement has a complicated dependence on vertical ion drift, neutral wind, magnetic latitude, MLT, and the height of the F2 layer. Finally, we discuss the notion of using the mean cross‐polar cap electric field as a proxy for assessing the effects of solar wind drivers on producing midlatitude electron density enhancement.

     
    more » « less