Abstract Chemotherapy-induced drug resistance remains a major cause of cancer recurrence and patient mortality. ATP binding cassette subfamily B member 1 (ABCB1) transporter overexpression in tumors contributes to resistance, yet current ABCB1 inhibitors have been unsuccessful in clinical trials. To address this challenge, we propose a new strategy using tryptophan as a lead molecule for developing ABCB1 inhibitors. Our idea stems from our studies on bat cells, as bats have low cancer incidences and high ABCB1 expression. We hypothesized that potential ABCB1 substrates in bats could act as competitive inhibitors in humans. By molecular simulations of ABCB1-substrate interactions, we generated a benzylatedCyclo-tryptophan (C3N-Dbn-Trp2) that inhibits ABCB1 activity with efficacy comparable to or better than the classical inhibitor, verapamil. C3N-Dbn-Trp2 restored chemotherapy sensitivity in drug-resistant human cancer cells with no adverse effect on cell proliferation. Our unique approach presents a promising lead toward developing effective ABCB1 inhibitors to treat drug-resistant cancers.
more »
« less
Use of photoimmunoconjugates to characterize ABCB1 in cancer cells
Abstract Accurate detection of ATP-binding cassette drug transporter ABCB1 expression is imperative for precise identification of drug-resistant tumors. Existing detection methods fail to provide the necessary molecular details regarding the functional state of the transporter. Photoimmunoconjugates are a unique class of antibody–dye conjugates for molecular diagnosis and therapeutic treatment. However, conjugating hydrophobic photosensitizers to hydrophilic antibodies is quite challenging. Here, we devise a photoimmunoconjugate that combines a clinically approved benzoporphyrin derivative (BPD) photosensitizer and the conformational-sensitive UIC2 monoclonal antibody to target functionally active human ABCB1 (i.e., ABCB1 in the inward-open conformation). We show that PEGylation of UIC2 enhances the BPD conjugation efficiency and reduces the amount of non-covalently conjugated BPD molecules by 17%. Size exclusion chromatography effectively separates the different molecular weight species found in the UIC2–BPD sample. The binding of UIC2–BPD to ABCB1 was demonstrated in lipidic nanodiscs and ABCB1-overexpressing triple negative breast cancer (TNBC) cells. UIC2–BPD was found to retain the conformation sensitivity of UIC2, as the addition of ABCB1 modulators increases the antibody reactivity in vitro . Thus, the inherent fluorescence capability of BPD can be used to label ABCB1-overexpressing TNBC cells using UIC2–BPD. Our findings provide insight into conjugation of hydrophobic photosensitizers to conformation-sensitive antibodies to target proteins expressed on the surface of cancer cells.
more »
« less
- Award ID(s):
- 2030253
- PAR ID:
- 10292521
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 2192-8606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The paucity of targeted therapies for triple‐negative breast cancer (TNBC) causes patients with this aggressive disease to suffer a poor clinical prognosis. A promising target for therapeutic intervention is the Wnt signaling pathway, which is activated in TNBC cells when extracellular Wnt ligands bind overexpressed Frizzled7 (FZD7) transmembrane receptors. This stabilizes intracellular β‐catenin proteins that in turn promote transcription of oncogenes that drive tumor growth and metastasis. To suppress Wnt signaling in TNBC cells, this work develops therapeutic nanoparticles (NPs) functionalized with FZD7 antibodies and β‐catenin small interfering RNAs (siRNAs). The antibodies enable TNBC cell specific binding and inhibit Wnt signaling by locking FZD7 receptors in a ligand unresponsive state, while the siRNAs suppress β‐catenin through RNA interference. Compared to NPs coated with antibodies or siRNAs individually, NPs coated with both agents more potently reduce the expression of several Wnt related genes in TNBC cells, leading to greater inhibition of cell proliferation, migration, and spheroid formation. In two murine models of metastatic TNBC, the dual antibody/siRNA nanocarriers outperformed controls in terms of inhibiting tumor growth, metastasis, and recurrence. These findings demonstrate suppressing Wnt signaling at both the receptor and mRNA levels via antibody/siRNA nanocarriers is a promising approach to combat TNBC.more » « less
-
Abstract P‐glycoprotein (P‐gp, ABCB1) is a well‐researched ATP‐binding cassette (ABC) drug efflux transporter linked to the development of cancer multidrug resistance (MDR). Despite extensive studies, approved therapies to safely inhibit P‐gp in clinical settings are lacking, necessitating innovative strategies beyond conventional inhibitors or antibodies to reverse MDR. Photodynamic therapy is a globally approved cancer treatment that uses targeted, harmless red light to activate non‐toxic photosensitizers, confining its cytotoxic photochemical effects to disease sites while sparing healthy tissues. This study demonstrates that photodynamic priming (PDP), a sub‐cytotoxic photodynamic therapy process, can inhibit P‐gp function by modulating cellular respiration and ATP levels in light accessible regions. Using chemoresistant (VBL‐MDA‐MB‐231) and chemosensitive (MDA‐MB‐231) triple‐negative breast cancer cell lines, we showed that PDP decreases mitochondrial membrane potential by 54.4% ± 30.4 and reduces mitochondrial ATP production rates by 94.9% ± 3.46. Flow cytometry studies showed PDP can effectively improve the retention of P‐gp substrates (calcein) by up to 228.4% ± 156.3 in chemoresistant VBL‐MDA‐MB‐231 cells, but not in chemosensitive MDA‐MB‐231 cells. Further analysis revealed that PDP did not alter the cell surface expression level of P‐gp in VBL‐MDA‐MB‐231 cells. These findings indicate that PDP can reduce cellular ATP below the levels that is required for the function of P‐gp and improve intracellular substrate retention. We propose that PDP in combination with chemotherapy drugs, might improve the efficacy of chemotherapy and overcome cancer MDR.more » « less
-
Abstract The emergence of drug resistance in cancer cells eventually causing relapse is a serious threat that demands new advances. Upregulation of the ATP‐dependent binding cassette (ABC) transporters, such as ABCB1, significantly contributes to the emergence of drug resistance in cancer. Despite more than 30 years of therapeutic discovery, and several generations of inhibitors against P‐gp, the search for effective agents that minimize toxicity to human cells, while maintaining efflux pump inhibition is still underway. Leads derived from natural product scaffolds are well‐known to be effective in various therapeutic approaches. Inspired by the biosynthetic pathway to Nocardioazine A, a marine alkaloid known to inhibit the P‐gp efflux pump in cancer cells, we devised a regioselective pathway to create structurally unique indole‐C3‐benzylcyclo‐L‐Trp‐L‐Trp diketopiperazines (DKPs). Using bat cells as a model to derive effective ABCB1 inhibitors for targeting human P‐gp efflux pumps, we have recently identifiedexo‐C3‐N‐Dbn‐Trp2 (13)as a lead ABCB1 inhibitor. This C3‐benzylated lead inhibited ABCB1 better than Verapamil.[21]Additionally,C3‐N‐Dbn‐Trp2restored chemotherapy sensitivity in drug‐resistant human cancer cells and had no adverse effect on cell proliferation in cell cultures. For a clearer structure‐activity relationship, we developed a broader screen to test C3‐functionalized pyrroloindolines as ABCB1 inhibitors and observed that C3‐benzylation is outperforming respective isoprenylated derivatives. Results arising from the molecular docking studies indicate that the interactions at the access tunnel between ABCB1 and the inhibitor result in a powerful predictor for the efficacy of the inhibitor. Based on fluorescence‐based assays, we conclude that the most efficacious inhibitor is thep‐cyano‐derivedexo‐C3‐N‐Dbn‐Trp2 (33 a), closely followed by thep‐nitro substituted analogue. By combining assay results with molecular docking studies, we further correlate that the predictions based on the inhibitor interactions at the access tunnel provide clues about the design of improved ABCB1 inhibitors. As it has been well documented that ABCB1 itself is powerfully engaged in multi‐drug resistance, this work lays the foundation for the design of a new class of inhibitors based on the endogenous amino acid‐derivedcyclo‐L‐Trp‐L‐Trp DKP scaffold.more » « less
-
Abstract Antibody–drug conjugates (ADCs) are antibody‐based therapeutics that have proven to be highly effective cancer treatment platforms. They are composed of monoclonal antibodies conjugated with highly potent drugs via chemical linkers. Compared to cysteine‐targeted chemistries, conjugation at native lysine residues can lead to a higher degree of structural heterogeneity, and thus it is important to evaluate the impact of conjugation on antibody conformation. Here, we present a workflow involving native ion mobility (IM)‐MS and gas‐phase unfolding for the structural characterization of lysine‐linked monoclonal antibody (mAb)–biotin conjugates. Following the determination of conjugation states via denaturing Liquid Chromatography‐Mass Spectrometry (LC–MS) measurements, we performed both size exclusion chromatography (SEC) and native IM‐MS measurements in order to compare the structures of biotinylated and unmodified IgG1 molecules. Hydrodynamic radii (Rh) and collision cross‐sectional (CCS) values were insufficient to distinguish the conformational changes in these antibody–biotin conjugates owing to their flexible structures and limited instrument resolution. In contrast, collision induced unfolding (CIU) analyses were able to detect subtle structural and stability differences in the mAb upon biotin conjugation, exhibiting a sensitivity to mAb conjugation that exceeds native MS analysis alone. Destabilization of mAb–biotin conjugates was detected by both CIU and differential scanning calorimetry (DSC) data, suggesting a previously unknown correlation between the two measurement tools. We conclude by discussing the impact of IM‐MS and CIU technologies on the future of ADC development pipelines.more » « less
An official website of the United States government

