skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Antibody and siRNA Nanocarriers to Suppress Wnt Signaling, Tumor Growth, and Lung Metastasis in Triple‐Negative Breast Cancer
Abstract The paucity of targeted therapies for triple‐negative breast cancer (TNBC) causes patients with this aggressive disease to suffer a poor clinical prognosis. A promising target for therapeutic intervention is the Wnt signaling pathway, which is activated in TNBC cells when extracellular Wnt ligands bind overexpressed Frizzled7 (FZD7) transmembrane receptors. This stabilizes intracellular β‐catenin proteins that in turn promote transcription of oncogenes that drive tumor growth and metastasis. To suppress Wnt signaling in TNBC cells, this work develops therapeutic nanoparticles (NPs) functionalized with FZD7 antibodies and β‐catenin small interfering RNAs (siRNAs). The antibodies enable TNBC cell specific binding and inhibit Wnt signaling by locking FZD7 receptors in a ligand unresponsive state, while the siRNAs suppress β‐catenin through RNA interference. Compared to NPs coated with antibodies or siRNAs individually, NPs coated with both agents more potently reduce the expression of several Wnt related genes in TNBC cells, leading to greater inhibition of cell proliferation, migration, and spheroid formation. In two murine models of metastatic TNBC, the dual antibody/siRNA nanocarriers outperformed controls in terms of inhibiting tumor growth, metastasis, and recurrence. These findings demonstrate suppressing Wnt signaling at both the receptor and mRNA levels via antibody/siRNA nanocarriers is a promising approach to combat TNBC.  more » « less
Award ID(s):
1752009
PAR ID:
10505786
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Therapeutics
Volume:
7
Issue:
6
ISSN:
2366-3987
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Triple negative breast cancer (TNBC) is an aggressive type of breast cancer with very little treatment options. TNBC is very heterogeneous with large alterations in the genomic, transcriptomic, and proteomic landscapes leading to various subtypes with differing responses to therapeutic treatments. We applied a multi-omics data integration method to evaluate the correlation of important regulatory features in TNBC BRCA1 wild-type MDA-MB-231 and TNBC BRCA1 5382insC mutated HCC1937 cells compared with non-tumorigenic epithelial breast MCF10A cells. The data includes DNA methylation, RNAseq, protein, phosphoproteomics, and histone post-translational modification. Data integration methods identified regulatory features from each omics method that had greater than 80% positive correlation within each TNBC subtype. Key regulatory features at each omics level were identified distinguishing the three cell lines and were involved in important cancer related pathways such as TGFβ signaling, PI3K/AKT/mTOR, and Wnt/beta-catenin signaling. We observed overexpression of PTEN, which antagonizes the PI3K/AKT/mTOR pathway, and MYC, which downregulates the same pathway in the HCC1937 cells relative to the MDA-MB-231 cells. The PI3K/AKT/mTOR and Wnt/beta-catenin pathways are both downregulated in HCC1937 cells relative to MDA-MB-231 cells, which likely explains the divergent sensitivities of these cell lines to inhibitors of downstream signaling pathways. The DNA methylation and RNAseq data is freely available via GEO GSE171958 and the proteomics data is available via the ProteomeXchange PXD025238. 
    more » « less
  2. Abstract Circulating tumor cell (CTC) clusters mediate metastasis at a higher efficiency and are associated with lower overall survival in breast cancer compared to single cells. Combining single-cell RNA sequencing and protein analyses, here we report the profiles of primary tumor cells and lung metastases of triple-negative breast cancer (TNBC). ICAM1 expression increases by 200-fold in the lung metastases of three TNBC patient-derived xenografts (PDXs). Depletion of ICAM1 abrogates lung colonization of TNBC cells by inhibiting homotypic tumor cell-tumor cell cluster formation. Machine learning-based algorithms and mutagenesis analyses identify ICAM1 regions responsible for homophilic ICAM1-ICAM1 interactions, thereby directing homotypic tumor cell clustering, as well as heterotypic tumor-endothelial adhesion for trans-endothelial migration. Moreover, ICAM1 promotes metastasis by activating cellular pathways related to cell cycle and stemness. Finally, blocking ICAM1 interactions significantly inhibits CTC cluster formation, tumor cell transendothelial migration, and lung metastasis. Therefore, ICAM1 can serve as a novel therapeutic target for metastasis initiation of TNBC. 
    more » « less
  3. Abstract The tumor microenvironment (TME) promotes proliferation, drug resistance, and invasiveness of cancer cells. Therapeutic targeting of the TME is an attractive strategy to improve outcomes for patients, particularly in aggressive cancers such as triple-negative breast cancer (TNBC) that have a rich stroma and limited targeted therapies. However, lack of preclinical human tumor models for mechanistic understanding of tumor–stromal interactions has been an impediment to identify effective treatments against the TME. To address this need, we developed a three-dimensional organotypic tumor model to study interactions of patient-derived cancer-associated fibroblasts (CAF) with TNBC cells and explore potential therapy targets. We found that CAFs predominantly secreted hepatocyte growth factor (HGF) and activated MET receptor tyrosine kinase in TNBC cells. This tumor–stromal interaction promoted invasiveness, epithelial-to-mesenchymal transition, and activities of multiple oncogenic pathways in TNBC cells. Importantly, we established that TNBC cells become resistant to monotherapy and demonstrated a design-driven approach to select drug combinations that effectively inhibit prometastatic functions of TNBC cells. Our study also showed that HGF from lung fibroblasts promotes colony formation by TNBC cells, suggesting that blocking HGF-MET signaling potentially could target both primary TNBC tumorigenesis and lung metastasis. Overall, we established the utility of our organotypic tumor model to identify and therapeutically target specific mechanisms of tumor–stromal interactions in TNBC toward the goal of developing targeted therapies against the TME. Implications: Leveraging a state-of-the-art organotypic tumor model, we demonstrated that CAFs-mediated HGF-MET signaling drive tumorigenic activities in TNBC and presents a therapeutic target. 
    more » « less
  4. Temperature-dependent sex determination (TSD) is a well-known characteristic of many reptilian species. However, the molecular processes linking ambient temperature to determination of gonad fate remain hazy. Here, we test the hypothesis that Wnt expression and signaling differ between female- and male-producing temperatures in the snapping turtle Chelydra serpentina. Canonical Wnt signaling involves secretion of glycoproteins called WNTs, which bind to and activate membrane bound receptors that trigger β-catenin stabilization and translocation to the nucleus where β-catenin interacts with TCF/LEF transcription factors to regulate expression of Wnt targets. Non-canonical Wnt signaling occurs via 2 pathways that are independent of β-catenin: one involves intracellular calcium release (the Wnt/Ca2+ pathway), while the other involves activation of RAC1, JNK, and RHOA (the Wnt/planar cell polarity pathway). We screened 20 Wnt genes for differential expression between female- and male-producing temperatures during sex determination in the snapping turtle. Exposure of embryos to the female-producing temperature decreased expression of 7 Wnt genes but increased expression of 2 Wnt genes and Rspo1 relative to embryos at the male-producing temperature. Temperature also regulated expression of putative Wnt target genes in vivo and a canonical Wnt reporter (6x TCF/LEF sites drive H2B-GFP expression) in embryonic gonadal cells in vitro. Results indicate that Wnt signaling was higher at the female- than at the male-producing temperature. Evolutionary analyses of all 20 Wnt genes revealed that thermosensitive Wnts, as opposed to insensitive Wnts, were less likely to show evidence of positive selection and experienced stronger purifying selection within TSD species. 
    more » « less
  5. Chemotherapy remains the standard treatment for triple‐negative breast cancer (TNBC); however, chemoresistance compromises its efficacy. The RNA‐binding protein Hu antigen R (HuR) could be a potential therapeutic target to enhance the chemotherapy efficacy. HuR is known to mainly stabilize its target mRNAs, and/or promote the translation of encoded proteins, which are implicated in multiple cancer hallmarks, including chemoresistance. In this study, a docetaxel‐resistant cell subline (231‐TR) was established from the human TNBC cell line MDA‐MB‐231. Both the parental and resistant cell lines exhibited similar sensitivity to the small molecule functional inhibitor of HuR, KH‐3. Docetaxel and KH‐3 combination therapy synergistically inhibited cell proliferation in TNBC cells and tumor growth in three animal models. KH‐3 downregulated the expression levels of HuR targets (e.g., β‐Catenin and BCL2) in a time‐ and dose‐dependent manner. Moreover, KH‐3 restored docetaxel's effects on activating Caspase‐3 and cleaving PARP in 231‐TR cells, induced apoptotic cell death, and caused S‐phase cell cycle arrest. Together, our findings suggest that HuR is a critical mediator of docetaxel resistance and provide a rationale for combining HuR inhibitors and chemotherapeutic agents to enhance chemotherapy efficacy. 
    more » « less