Abstract The eastern Indian Ocean is substantially under sampled with respect to the biological carbon pump – the suite of processes that transport the carbon fixed by phytoplankton into the deeper ocean. Using sediment traps and other ecosystem measurements, we quantified sinking organic matter flux and investigated the characteristics of sinking particles in waters overlying the Argo Abyssal Plain directly downstream of the Indonesian Throughflow off northwest Australia. Carbon export from the euphotic zone averaged 7.0 mmol C m-2d-1, which equated to an average export efficiency (export / net primary production) of 0.17. Sinking particle flux within the euphotic zone (beneath the mixed layer, but above the deep chlorophyll maximum) averaged slightly higher than flux at the base of the euphotic zone, suggesting that the deep euphotic zone was a depth stratum of net particle remineralization. Carbon flux attenuation continued into the twilight zone with a transfer efficiency (export at euphotic depth + 100m / export at euphotic depth) of 0.62 and an average Martin’sb-value of 1.1. Within the euphotic zone, fresh phytoplankton (chlorophyll associated with sinking particles, possibly contained within appendicularian houses) were an important component of sinking particles, but beneath the euphotic zone the fecal pellets of herbivorous zooplankton (phaeopigments) were more important. Changes in carbon and nitrogen isotopic composition with depth further reflected remineralization processes occurring as particles sank. We show similarities with biological carbon pump functioning in a similar semi-enclosed oligotrophic marginal sea, the Gulf of Mexico, including net remineralization across the deep chlorophyll maximum. Submitted to: Deep-sea Research II HighlightsDespite low productivity, export efficiency was 17% of primary productionFlux attenuation beneath the euphotic zone (EZ) was low for a tropical regionSinking particle flux from the upper to lower EZ exceeded export from lower EZThe deep EZ was a stratum of net particle remineralization (and net heterotrophy) 
                        more » 
                        « less   
                    
                            
                            Sinking carbon, nitrogen, and pigment flux within and beneath the euphotic zone in the oligotrophic, open-ocean Gulf of Mexico
                        
                    
    
            Abstract During two cruises in the oligotrophic oceanic Gulf of Mexico, we deployed sediment traps at three depths: center of the euphotic zone (EZ) (60 m), base of the EZ (117–151 m), and in the twilight zone (231 m). Organic carbon export declined with depth from 6.4 to 4.6 to 2.4 mmol C m−2 d−1, suggesting that net particle production was concentrated in the upper EZ. Net primary production varied from 24 to 29 mmol C m−2 d−1, slightly more than half in the upper EZ. Export ratios varied from 11 to 25%. Trap measurements of chlorophyll and phaeopigments allowed us to quantify fluxes of fresh phytoplankton and herbivorous fecal pellets, respectively, which were both minor contributors to total flux, although their contributions varied with depth. Phytoplankton flux was more important from the upper to lower EZ; fecal pellets were more important at the EZ base and below. C:N elemental ratios and 13C and 15N isotope analyses indicated particle transformations within and beneath the EZ. 234Th-238U disequilibrium measurements varied, likely reflecting the mixing of water from multiple regions over the ~month-long time-scale of 234Th. Our results highlight the complexity of the biological carbon pump in oligotrophic regions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1851347
- PAR ID:
- 10292524
- Editor(s):
- Dolan, John
- Date Published:
- Journal Name:
- Journal of Plankton Research
- ISSN:
- 0142-7873
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            One pathway of the biological pump that remains largely unquantified in many export models is the active transport of carbon from the surface ocean to the mesopelagic by zooplankton diel vertical migration (DVM). Here, we develop a simple representation of zooplankton DVM and implement it in a global export model as a thought experiment to illustrate the effects of DVM on carbon export and mesopelagic biogeochemistry. The model is driven by diagnostic satellite measurements of net primary production, algal biomass, and phytoplankton size structure. Due to constraints on available satellite data, the results are restricted to the latitude range from 60°N to 60°S. The modeled global export flux from the base of the euphotic zone was 6.5 PgC/year, which represents a 14% increase over the export flux in model runs without DVM. The mean (± standard deviation, SD) proportional contribution of the DVM‐mediated export flux to total carbon export, averaged over the global domain and the climatological seasonal cycle, was 0.16 ± 0.04 and the proportional contribution of DVM activity to total respiration within the twilight zone was 0.16 ± 0.06. Adding DVM activity to the model also resulted in a deep local maximum in the oxygen utilization profile. The model results were most sensitive to the assumptions for the fraction of individuals participating in DVM, the fraction of fecal pellets produced in the euphotic zone, and the fraction of grazed carbon that is metabolized.more » « less
- 
            Abstract Understanding particle cycling processes in the ocean is critical for predicting the response of the biological carbon pump to external perturbations. Here, measurements of particulate organic carbon (POC) concentration in two size fractions (1–51 and >51 μm) from GEOTRACES Pacific meridional transect GP15 are combined with a POC cycling model to estimate rates of POC production, (dis)aggregation, sinking, remineralization, and vertical transport mediated by migrating zooplankton, in the euphotic zone (EZ) and upper mesopelagic zone (UMZ) of distinct environments. We find coherent variations in POC cycling parameters and fluxes throughout the transect. Thus, the settling speed of POC in the >51 μm fraction increased with depth in the UMZ, presumably due to higher particle densities at depth. The settling flux of total POC (>1 μm) out of the EZ was positively correlated with primary production integrated over the EZ; the highest export occurred in the subarctic gyre while the lowest occurred in the subtropical gyres. The ratio of POC settling flux to integrated primary production was low (<5%) along GP15, which suggests an efficient recycling of POC in the EZ in all trophic regimes. Specific rates of POC remineralization did not show clear variations with temperature or dissolved oxygen concentration, that is, POC recycling was apparently controlled by other factors such as microbial colonization and substrate lability. Particle cohesiveness, as approximated by the second‐order rate constant for particle aggregation, was negatively correlated with trophic regime: particles appeared more cohesive in low‐productivity regions than in high‐productivity regions.more » « less
- 
            Whereas recruitment success for many fisheries depends on coincident timing of larvae with abundance peaks of their prey, less can be more in the tropical/subtropical spawning areas of bluefin tunas if lower but steady food resources are offset by reduced larval vulnerability to pelagic predators. To understand larval habitat characteristics for Southern Bluefin Tuna (SBT), we quantified microbial community carbon flows based on growth and grazing rates from depth profiles of dilution incubations and carbon biomass assessments from microscopy and flow cytometry (FCM) during their peak spawning off NW Australia (Indian Ocean) in February 2022. Two Chla-based estimates of phytoplankton production gave differing offsets due to cycling or mixotrophy, exceeding 14C net community production on average (677 ± 98 versus 447 ± 43 mg C m−2 d−1). Productivity was higher than in the Gulf of Mexico spawning area for Atlantic Bluefin Tuna but less than similar studies of oceanic upwelling regions. Microzooplankton grazing averaged 482 ± 63 mg C m−2 d−1 (71 ± 13 % of production). Two measurement variables for Prochlorococcus gave average production and grazing rates of 282 ± 36 and 248 ± 32 mg C m−2 d−1 (86 ± 6 % grazed). Prochlorococcus comprised almost half of production and grazing fluxes in the upper (0–25 m) euphotic zone where SBT larvae reside. Prochlorococcus declined and eukaryotic phytoplankton and heterotrophic bacteria increased in relative importance in the lower euphotic zone. These results describe relatively classic open-ocean oligotrophic conditions as the food web base for nutritional flows to SBT larvae.more » « less
- 
            Abstract Particulate organic matter settling out of the euphotic zone is a major sink for atmospheric carbon dioxide and serves as a primary food source to mesopelagic food webs. Degradation of this organic matter encompasses a suite of mechanisms that attenuate flux, including heterotrophic metabolic processes of microbes and metazoans. The relative contributions of microbial and metazoan heterotrophy to flux attenuation, however, have been difficult to determine. We present results of compound specific nitrogen isotope analysis of amino acids of sinking particles from sediment traps and size‐fractionated particles from in situ filtration between the surface and 500 m at Ocean Station Papa, collected during NASA EXPORTS (EXport Processes in the Ocean from RemoTe Sensing). With increasing depth, we observe: (1) that, based on theδ15N values of threonine, fecal pellets dominate the sinking particle flux and that attenuation of downward particle flux occurs largely via disaggregation in the upper mesopelagic; (2) an increasing trophic position of particles in the upper water column, reflecting increasing heterotrophic contributions to the nitrogen pool and the loss of particles via remineralization; and (3) increasingδ15N values of source amino acids in submicron and small (1–6μm) particles, reflecting microbial particle solubilization. We further employ a Bayesian mixing model to estimate the relative proportions of fecal pellets, phytodetritus, and microbially degraded material in particles and compare these results and our interpretations of flux attenuation mechanisms to other, independent methods used during EXPORTS.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    