Abstract A quantitative understanding of the mesopelagic zooplankton food web is key to development of accurate carbon budgets and geochemical models in marine systems. Here we use compound specific nitrogen stable isotope analysis of amino acids to quantify the trophic structure of the microzooplankton and mesozooplankton community during summer in the subarctic northeast Pacific Ocean during the EXport Processes in the Ocean from Remote Sensing (EXPORTS) field campaign. Source amino acid values in particles and zooplankton provide strong evidence that basal resources for the mesopelagic zooplankton food web were primarily small (), suspended or slow‐sinking particles, but that surface organic matter delivered by vertically migrating zooplankton may have also been important. Comparisons of values of source and trophic amino acids provide estimates of food web length, which decrease significantly with depth and suggest that protistan microzooplankton are key components of the food web from the surface to at least 500. These results emphasize the importance of small particles as a source of carbon and nitrogen to mesopelagic communities in this region, support observations of an inverse relationship between zooplankton vertical migration and small particles as sources of carbon to deep‐sea food webs in low productivity environments, and document the role of heterotrophic protists as key trophic intermediaries in the mesopelagic zone at this location. 
                        more » 
                        « less   
                    
                            
                            Deconvolving mechanisms of particle flux attenuation using nitrogen isotope analyses of amino acids
                        
                    
    
            Abstract Particulate organic matter settling out of the euphotic zone is a major sink for atmospheric carbon dioxide and serves as a primary food source to mesopelagic food webs. Degradation of this organic matter encompasses a suite of mechanisms that attenuate flux, including heterotrophic metabolic processes of microbes and metazoans. The relative contributions of microbial and metazoan heterotrophy to flux attenuation, however, have been difficult to determine. We present results of compound specific nitrogen isotope analysis of amino acids of sinking particles from sediment traps and size‐fractionated particles from in situ filtration between the surface and 500 m at Ocean Station Papa, collected during NASA EXPORTS (EXport Processes in the Ocean from RemoTe Sensing). With increasing depth, we observe: (1) that, based on theδ15N values of threonine, fecal pellets dominate the sinking particle flux and that attenuation of downward particle flux occurs largely via disaggregation in the upper mesopelagic; (2) an increasing trophic position of particles in the upper water column, reflecting increasing heterotrophic contributions to the nitrogen pool and the loss of particles via remineralization; and (3) increasingδ15N values of source amino acids in submicron and small (1–6μm) particles, reflecting microbial particle solubilization. We further employ a Bayesian mixing model to estimate the relative proportions of fecal pellets, phytodetritus, and microbially degraded material in particles and compare these results and our interpretations of flux attenuation mechanisms to other, independent methods used during EXPORTS. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10441957
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- ISSN:
- 0024-3590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Zooplankton contribute a major component of the vertical flux of particulate organic matter to the ocean interior by packaging consumed food and waste into large, dense fecal pellets that sink quickly. Existing methods for quantifying the contribution of fecal pellets to particulate organic matter use either visual identification or lipid biomarkers, but these methods may exclude fecal material that is not morphologically distinct, or may include zooplankton carcasses in addition to fecal pellets. Based on results from seven pairs of wild‐caught zooplankton and their fecal pellets, we assess the ability of compound‐specific isotope analysis of amino acids (CSIA‐AA) to chemically distinguish fecal pellets as an end‐member material within particulate organic matter. Nitrogen CSIA‐AA is an improvement on previous uses of bulk stable isotope ratios, which cannot distinguish between differences in baseline isotope ratios and fractionation due to metabolic processing. We suggest that the relative trophic position of zooplankton and their fecal pellets, as calculated using CSIA‐AA, can provide a metric for estimating the dietary absorption efficiency of zooplankton. Using this metric, the zooplankton examined here had widely ranging dietary absorption efficiencies, where lower dietary absorption may equate to higher proportions of fecal packaging of undigested material. The nitrogen isotope ratios of threonine and alanine statistically distinguished the zooplankton fecal pellets from literature‐derived examples of phytoplankton, zooplankton biomass, and microbially degraded organic matter. We suggest that δ15N values of threonine and alanine could be used in mixing models to quantify the contribution of fecal pellets to particulate organic matter.more » « less
- 
            Abstract The eastern Indian Ocean is substantially under sampled with respect to the biological carbon pump – the suite of processes that transport the carbon fixed by phytoplankton into the deeper ocean. Using sediment traps and other ecosystem measurements, we quantified sinking organic matter flux and investigated the characteristics of sinking particles in waters overlying the Argo Abyssal Plain directly downstream of the Indonesian Throughflow off northwest Australia. Carbon export from the euphotic zone averaged 7.0 mmol C m-2d-1, which equated to an average export efficiency (export / net primary production) of 0.17. Sinking particle flux within the euphotic zone (beneath the mixed layer, but above the deep chlorophyll maximum) averaged slightly higher than flux at the base of the euphotic zone, suggesting that the deep euphotic zone was a depth stratum of net particle remineralization. Carbon flux attenuation continued into the twilight zone with a transfer efficiency (export at euphotic depth + 100m / export at euphotic depth) of 0.62 and an average Martin’sb-value of 1.1. Within the euphotic zone, fresh phytoplankton (chlorophyll associated with sinking particles, possibly contained within appendicularian houses) were an important component of sinking particles, but beneath the euphotic zone the fecal pellets of herbivorous zooplankton (phaeopigments) were more important. Changes in carbon and nitrogen isotopic composition with depth further reflected remineralization processes occurring as particles sank. We show similarities with biological carbon pump functioning in a similar semi-enclosed oligotrophic marginal sea, the Gulf of Mexico, including net remineralization across the deep chlorophyll maximum. Submitted to: Deep-sea Research II HighlightsDespite low productivity, export efficiency was 17% of primary productionFlux attenuation beneath the euphotic zone (EZ) was low for a tropical regionSinking particle flux from the upper to lower EZ exceeded export from lower EZThe deep EZ was a stratum of net particle remineralization (and net heterotrophy)more » « less
- 
            null (Ed.)In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean’s biological pump and help sustain deep-sea ecosystems.more » « less
- 
            Abstract Eukaryotic microalgae play critical roles in the structure and function of marine food webs. The contribution of microalgae to food webs can be tracked using compound‐specific isotope analysis of amino acids (CSIA‐AA). Previous CSIA‐AA studies have defined eukaryotic microalgae as a single functional group in food web mixing models, despite their vast taxonomic and ecological diversity. Using controlled cultures, this work characterizes the amino acidδ13C (δ13CAA) fingerprints—a multivariate metric of amino acid carbon isotope values—of four major groups of eukaryotic microalgae: diatoms, dinoflagellates, raphidophytes, and prasinophytes. We found excellent separation of essential amino acidδ13C (δ13CEAA) fingerprints among four microalgal groups (mean posterior probability reclassification of 99.2 ± 2.9%). We also quantified temperature effects, a primary driver of microalgal bulk carbon isotope variability, on the fidelity ofδ13CAAfingerprints. A 10°C range in temperature conditions did not have significant impacts on variance inδ13CAAvalues or the diagnostic microalgalδ13CEAAfingerprints. Theseδ13CEAAfingerprints were used to identify primary producers at the base of food webs supporting consumers in two contrasting systems: (1) penguins feeding in a diatom‐based food web and (2) mixotrophic corals receiving amino acids directly from autotrophic endosymbiotic dinoflagellates and indirectly from water column diatoms, prasinophytes, and cyanobacteria, likely via heterotrophic feeding on zooplankton. The increased taxonomic specificity of CSIA‐AA fingerprints developed here will greatly improve future efforts to reconstruct the contribution of diverse eukaryotic microalgae to the sources and cycling of organic matter in food web dynamics and biogeochemical cycling studies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
