skip to main content


Title: Electron beam-induced deposition of platinum from Pt(CO) 2 Cl 2 and Pt(CO) 2 Br 2
Two platinum precursors, Pt(CO) 2 Cl 2 and Pt(CO) 2 Br 2 , were designed for focused electron beam-induced deposition (FEBID) with the aim of producing platinum deposits of higher purity than those deposited from commercially available precursors. In this work, we present the first deposition experiments in a scanning electron microscope (SEM), wherein series of pillars were successfully grown from both precursors. The growth of the pillars was studied as a function of the electron dose and compared to deposits grown from the commercially available precursor MeCpPtMe 3 . The composition of the deposits was determined using energy-dispersive X-ray spectroscopy (EDX) and compared to the composition of deposits from MeCpPtMe 3 , as well as deposits made in an ultrahigh-vacuum (UHV) environment. A slight increase in metal content and a higher growth rate are achieved in the SEM for deposits from Pt(CO) 2 Cl 2 compared to MeCpPtMe 3 . However, deposits made from Pt(CO) 2 Br 2 show slightly less metal content and a lower growth rate compared to MeCpPtMe 3 . With both Pt(CO) 2 Cl 2 and Pt(CO) 2 Br 2 , a marked difference in composition was found between deposits made in the SEM and deposits made in UHV. In addition to Pt, the UHV deposits contained halogen species and little or no carbon, while the SEM deposits contained only small amounts of halogen species but high carbon content. Results from this study highlight the effect that deposition conditions can have on the composition of deposits created by FEBID.  more » « less
Award ID(s):
1904802 1607547 1904559
NSF-PAR ID:
10292527
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Beilstein Journal of Nanotechnology
Volume:
11
ISSN:
2190-4286
Page Range / eLocation ID:
1789 to 1800
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we present experimental and theoretical results on dissociative electron attachment and dissociative ionisation for the potential FEBID precursor cis -Pt(CO) 2 Cl 2 . UHV surface studies have shown that high purity platinum deposits can be obtained from cis -Pt(CO) 2 Cl 2 . The efficiency and energetics of ligand removal through these processes are discussed and experimental appearance energies are compared to calculated thermochemical thresholds. The present results demonstrate the potential effectiveness of electron-induced reactions in the deposition of this FEBID precursor, and these are discussed in conjunction with surface science studies on this precursor and the design of new FEBID precursors. 
    more » « less
  2. null (Ed.)
    Platinum coordination complexes have found wide applications as chemotherapeutic anticancer drugs in synchronous combination with radiation (chemoradiation) as well as precursors in focused electron beam induced deposition (FEBID) for nano-scale fabrication. In both applications, low-energy electrons (LEE) play an important role with regard to the fragmentation pathways. In the former case, the high-energy radiation applied creates an abundance of reactive photo- and secondary electrons that determine the reaction paths of the respective radiation sensitizers. In the latter case, low-energy secondary electrons determine the deposition chemistry. In this contribution, we present a combined experimental and theoretical study on the role of LEE interactions in the fragmentation of the Pt(II) coordination compound cis-PtBr2(CO)2. We discuss our results in conjunction with the widely used cancer therapeutic Pt(II) coordination compound cis-Pt(NH3)2Cl2 (cisplatin) and the carbonyl analog Pt(CO)2Cl2, and we show that efficient CO loss through dissociative electron attachment dominates the reactivity of these carbonyl complexes with low-energy electrons, while halogen loss through DEA dominates the reactivity of cis-Pt(NH3)2Cl2. 
    more » « less
  3. Abstract

    The fabrication of Ru nanostructures by focused electron beam induced deposition (FEBID) requires suitable precursor molecules and processes to obtain the pure metal. So far this is problematic because established organometallic Ru precursors contain large organic ligands, such as cyclopentadienyl anions, that tend to become embedded in the deposit during the FEBID process. Recently, (η3-C3H5)Ru(CO)3X (X = Cl, Br) has been proposed as an alternative precursor because CO can easily desorb under electron exposure. However, allyl and Cl ligands remain behind after electron irradiation and the removal of the halide requires extensive electron exposures. Auger electron spectroscopy is applied to demonstrate a postdeposition purification process in which NH3is used as a reactant that enhances the removal of Cl from deposits formed by electron irradiation of thin condensed layers of (η3-C3H5)Ru(CO)3Cl. The loss of CO from the precursor during electron-induced decomposition enables a reaction between NH3and the Cl ligands that produces HCl. The combined use of electron-stimulated desorption experiments and thermal desorption spectrometry further reveals that thermal reactions contribute to the loss of CO in the FEBID process but remove only minor amounts of the allyl and Cl ligands.

     
    more » « less
  4. Abstract

    The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=a, Me;b, Et;c,n‐Bu;d,n‐Dec;e, Bn;f,p‐tolCH2) are combined with (p‐tol3P)2PtCl2ortrans‐(p‐tol3P)2Pt((C≡C)2H)2to give the chelatescis‐(R2C(CH2PPh2)2)PtCl2(2 af, 94–69 %) orcis‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 af, 97–54 %). Complexes3 adare also available from2 adand excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2and3react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 af; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Clare challenging to remove. Crystal structures of4 a,bshow skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 afare similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally.

     
    more » « less
  5. Abstract

    Site‐selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site‐selective modification strategy utilizing poly(ethylene oxide)‐block‐polystyrene (PEO‐b‐PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO‐b‐PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2/WO3‐xframework, and meanwhile FeOxnanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal‐support interaction between FeOxand Pt. The selective modification of Pt NPs with FeOxmakes the Pt NPs present an electron‐deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2/WO3‐x‐FeOx/Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).

     
    more » « less