Abstract GW190521 was the most massive black hole merger discovered by LIGO/Virgo so far, with masses in tension with stellar evolution models. A possible explanation of such heavy black holes is that they themselves are the remnants of previous mergers of lighter black holes. Here we estimate the masses of the ancestral black holes of GW190521, assuming it is the end product of previous mergers. We find that the heaviest parental black holes has a mass of M⊙(90% credible level). We find 70% probability that it is in the 50M⊙–120M⊙mass gap, indicating that it may also be the end product of a previous merger. We therefore also compute the expected mass distributions of the “grandparent” black holes of GW190521, assuming they existed. Ancestral black hole masses could represent an additional puzzle piece in identifying the origin of LIGO/Virgo/KAGRA’s heaviest black holes.
more »
« less
Dynamical Formation Scenarios for GW190521 and Prospects for Decihertz Gravitational-wave Astronomy with GW190521-like Binaries
- Award ID(s):
- 2009916
- PAR ID:
- 10292534
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 909
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
GW190521, the most massive binary black hole merger confidently detected by the LIGO-Virgo- KAGRA Collaboration, is the first gravitational-wave observation of an intermediate-mass black hole. The signal was followed approximately 34 days later by flare ZTF19abanrhr, detected in AGN J124942.3 þ 344929 by the Zwicky Transient Facility at the 78% spatial contour for GW190521’s sky localization. Using the GWTC-2.1 data release, we find that the association between GW190521 and flare ZTF19abanrhr as its electromagnetic counterpart is preferred over a random coincidence of the two transients with a log Bayes’ factor of 8.6, corresponding to an odds ratio of ∼5400∶1 for equal prior odds and ∼400∶1 assuming an astrophysical prior odds of 1=13. Given the association, the multimessenger signal allows for an estimation of the Hubble constant, finding H0 ¼ 102þ27 −25 km s−1 Mpc−1 when solely analyzing GW190521 and 79.2þ17.6 −9.6 km s−1 Mpc−1 assuming prior information from the binary neutron star merger GW170817, both consistent with the existing literature.more » « less
An official website of the United States government

