skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Typing on Midair Virtual Keyboards: Exploring Visual Designs and Interaction Styles
We investigate typing on a QWERTY keyboard rendered in virtual reality. Our system tracks users’ hands in the virtual environment via a Leap Motion mounted on the front of a head mounted display. This allows typing on an auto-correcting midair keyboard without the need for auxiliary input devices such as gloves or handheld controllers. It supports input via the index fingers of one or both hands. We compare two keyboard designs: a normal QWERTY layout and a split layout. We found users typed at around 16 words-per-minute using one or both index fingers on the normal layout, and about 15 words-per-minute using both index fingers on the split layout. Users had a corrected error rate below 2% in all cases. To explore midair typing with limited or no visual feedback, we had users type on an invisible keyboard. Users typed on this keyboard at 11 words-per-minute at an error rate of 3.3% despite the keyboard providing almost no visual feedback.  more » « less
Award ID(s):
1750193
PAR ID:
10292552
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IFIP Conference on Human-Computer Interaction INTERACT 2021
Volume:
12935
Page Range / eLocation ID:
132-151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Typing on a midair keyboard in mixed reality can be difficult due to the lack of tactile feedback when virtual keys are tapped. Locating the keyboard over a real-world surface offers a potential way to mitigate this issue. We measured user performance and preference when a virtual keyboard was located on a table, on a wall, or in midair. Despite the additional tactile feedback offered by the table and wall locations, we found the midair location had a significantly higher entry rate with a similar error rate compared to the other locations. Participants also preferred the midair location over the other locations. 
    more » « less
  2. Accuracy and speed are pivotal when it comes to typing. Mixed reality headsets offer users the groundbreaking ability to project virtual objects into the physical world. However, when typing on a virtual keyboard in mixed reality space, users lose the tactile feedback that comes with a physical keyboard, making typing much more difficult. Our goal was to explore the capability of users to type using all ten fingers on a virtual key in mixed reality. We measured user performance when typing with index fingers versus all ten fingers. We also examined the usage of eye-tracking to disable all keys the user wasn’t looking at, and the effect it had on improving speed and accuracy. Our findings so far indicate that, while eyetracking seems to help accuracy, it is not enough to bring 10 finger typing up to the same level of performance as index finger typing. 
    more » « less
  3. null (Ed.)
    Typing every character in a text message may require more time or effort than strictly necessary. Skipping spaces or other characters may be able to speed input and also reduce a user's physical input effort. This can be particularly important for people with motor impairments. In a large crowdsourced study, we found workers frequently abbreviated text by omitting mid-word vowels. We designed a recognizer optimized for noisy input where users often omit spaces and mid-word vowels. We show using neural language models for selecting training text and rescoring sentences improved accuracy. On noisy touchscreen data collected from hundreds of users, we found accurate abbreviated input was possible even if a third of characters were omitted. Finally, in a study where users had to dwell for a second on each key, sentence abbreviated input was competitive with a conventional keyboard with word predictions. After practice, users wrote abbreviated sentences at 9.6 words-per-minute versus word input at 9.9 words-per-minute. 
    more » « less
  4. In many situations, it may be impractical or impossible to enter text by selecting precise locations on a physical or touchscreen keyboard. We present an ambiguous keyboard with four character groups that has potential applications for eyes-free text entry, as well as text entry using a single switch or a brain-computer interface.We develop a procedure for optimizing these character groupings based on a disambiguation algorithm that leverages a long-span language model. We produce both alphabetically-constrained and unconstrained character groups in an offline optimization experiment and compare them in a longitudinal user study. Our results did not show a significant difference between the constrained and unconstrained character groups after four hours of practice. As expected, participants had significantly more errors with the unconstrained groups in the first session, suggesting a higher barrier to learning the technique.We therefore recommend the alphabetically-constrained character groups, where participants were able to achieve an average entry rate of 12.0 words per minute with a 2.03% character error rate using a single hand and with no visual feedback. 
    more » « less
  5. Text entry is a common and important part of many intelligent user interfaces. However, inferring a user’s intended text from their input can be challenging: motor actions can be imprecise, input sensors can be noisy, and situations or disabilities can hamper a user’s perception of interface feedback. Numerous prior studies have explored input on touchscreen phones, smartwatches, in midair, and on desktop keyboards. Based on these prior studies, we are releasing a large and diverse data set of noisy typing input consisting of thousands of sentences written by hundreds of users on QWERTY-layout keyboards. This paper describes the various subsets contained in this new research dataset as well as the data format. 
    more » « less