skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phosphorus deprivation affects composition and spatial distribution of membrane lipids in legume nodules.
In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization–mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization–mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule.  more » « less
Award ID(s):
2139351
PAR ID:
10292568
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Plant physiology
ISSN:
1532-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Symbiotic nitrogen (N) fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N-fixing legumes have a higher demand for phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level. Hence, a study was carried out to address the alteration in metabolite levels of M. truncatula grown aeroponically and subjected to 4 weeks of P stress. First, GC-MS-based untargeted metabolomics initially revealed changes in the metabolic profile of nodules, with increased levels of amino acids and sugars and a decline in amounts of organic acids. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in the whole plant. Our results showed a drastic reduction in levels of organic acids and phosphorylated compounds in –P leaves, with a moderate reduction in –P roots and nodules. Additionally, sugars and amino acids were elevated in the whole plant under P deprivation. These findings provide evidence that N fixation in M. truncatula is mediated through a N feedback mechanism that in parallel is related to carbon and P metabolism. 
    more » « less
  2. null (Ed.)
    Leguminous plants form symbiotic relationships with rhizobia. These nitrogen-fixing bacteria live in specialized root organs called nodules. While rhizobia form the most notable host relationship within root nodules, other bacterial endophytes also inhabit these root nodules and can influence host-rhizobia interactions as well as exert effects of their own, whether beneficial or detrimental. In this study, we investigate differences in nodule communities between genotypes (A17 and R108) of a single plant species, the model legume Medicago truncatula. While diversity of endophytes in nodules was similar across hosts, both nodule endophyte composition and gene functional groups differed. In contrast to the significant direct effect of host genotype, neither the presence nor identity of a host in the previous generation (either A17 or R108) had a significant effect on the nodule endophyte diversity or composition. However, whether or not a host was present altered gene functional groups. We conclude that genetic variation within a legume host species can play an important role in the establishment of nodule microbiomes. Further studies, including GWAS and functional assays, can open the door for engineering and optimizing nodule endophyte communities that promote growth or have other beneficial qualities. 
    more » « less
  3. The model legumeMedicago truncatulaestablishes a symbiosis with soil bacteria (rhizobia) that carry out symbiotic nitrogen fixation (SNF) in plant root nodules. SNF requires the exchange of nutrients between the plant and rhizobia in the nodule that occurs across a plant-derived symbiosome membrane. One iron transporter, belonging to the Vacuolar iron Transporter-Like (VTL) family, MtVTL8, has been identified as essential for bacteria survival and therefore SNF. In this work we investigated the spatial expression ofMtVTL8in nodules and addressed whether it could be functionally interchangeable with a similar nodule-expressed iron transporter, MtVTL4. Using a structural model for MtVTL8 and the previously hypothesized mechanism for iron transport in a phylogenetically-related Vacuolar Iron Transporter (VIT), EgVIT1 with known crystal structure, we identified critical amino acids and obtained their mutants. Mutants were testedin plantafor complementation of an SNF defective line and in an iron sensitive mutant yeast strain. An extended phylogenetic assessment of VTLs and VITs showed that amino acids critical for function are conserved differently in VTLs vs. VITs. Our studies showed that some amino acids are essential for iron transport leading us to suggest a model for MtVTL8 function, one that is different for other iron transporters (VITs) studied so far. This study extends the understanding of iron transport mechanisms in VTLs as well as those used in SNF. 
    more » « less
  4. Nod factors secreted by nitrogen-fixing rhizobia are lipo-chitooligosaccharidic signals required for establishment of the nodule symbiosis with legumes. InMedicago truncatula, the Nod factor hydrolase 1 (MtNFH1) was found to cleave Nod factors ofSinorhizobium meliloti. Here, we report that the class V chitinase MtCHIT5b ofM. truncatulaexpressed inEscherichia colican release lipodisaccharides from Nod factors. Analysis ofM. truncatulamutant plants indicated that MtCHIT5b, together with MtNFH1, degradesS. melilotiNod factors in the rhizosphere.MtCHIT5bexpression was induced by treatment of roots with purified Nod factors or inoculation with rhizobia. MtCHIT5b with a fluorescent tag was detected in the infection pocket of root hairs. Nodulation of aMtCHIT5bknockout mutant was not significantly altered whereas overexpression ofMtCHIT5bresulted in fewer nodules. Reduced nodulation was observed whenMtCHIT5bandMtNFH1were simultaneously silenced in RNA interference experiments. Overall, this study shows that nodule formation ofM. truncatulais regulated by a second Nod factor cleaving hydrolase in addition to MtNFH1. 
    more » « less
  5. The ecologically and economically vital symbiosis between nitrogen-fixing rhizobia and leguminous plants is often thought of as a bi-partite interaction, yet studies increasingly show the prevalence of non-rhizobial endophytes (NREs) that occupy nodules alongside rhizobia. Yet, what impact these NREs have on plant or rhizobium fitness remains unclear. Here, we investigated four NRE strains found to naturally co-occupy nodules of the legume Medicago truncatula alongside Sinorhizobium meliloti in native soils. Our objectives were to (1) examine the direct and indirect effects of NREs on M. truncatula and S. meliloti fitness, and (2) determine whether NREs can re-colonize root and nodule tissues upon reinoculation. We identified one NRE strain (522) as a novel Paenibacillus species, another strain (717A) as a novel Bacillus species, and the other two (702A and 733B) as novel Pseudomonas species. Additionally, we found that two NREs (Bacillus 717A and Pseudomonas 733B) reduced the fitness benefits obtained from symbiosis for both partners, while the other two (522, 702A) had little effect. Lastly, we found that NREs were able to co-infect host tissues alongside S. meliloti. This study demonstrates that variation of NREs present in natural populations must be considered to better understand legume–rhizobium dynamics in soil communities. 
    more » « less