skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Laboratory Evidence of Transient Pressure Surge in a Fluid-Filled Fracture as a Potential Driver of Remote Dynamic Earthquake Triggering
Abstract Seismic waves carrying tiny perturbing stresses can trigger earthquakes in geothermal and volcanic regions. The underlying cause of this dynamic triggering is still not well understood. One leading hypothesis is that a sudden increase in the fluid-pore pressure in the fault zone is involved, but the exact physical mechanism is unclear. Here, we report experimental evidence in which a fluid-filled fracture was shown to be able to amplify the pressure of an incoming seismic wave. We built miniature pressure sensors and directly placed them inside a thin fluid-filled fracture to measure the fluid pressure during wave propagation. By varying the fracture aperture from 0.2 to 9.2 mm and sweeping the frequency from 12 to 70 Hz, we observed in the lab that the fluid pressure in the fracture could be amplified up to 25.2 times compared with the incident-wave amplitude. Because an increase of the fluid pressure in a fault can reduce the effective normal stress to allow the fault to slide, our observed transient pressure surge phenomenon may provide the mechanism for earthquake dynamic triggering.  more » « less
Award ID(s):
1833058
PAR ID:
10292580
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Seismic Record
Volume:
1
Issue:
2
ISSN:
2694-4006
Page Range / eLocation ID:
66 to 74
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Krauklis waves are generated by pressure disturbances in fluid‐filled cavities and travel along the solid‐fluid interface. Their far‐field radiation, observed in seismic data from volcanoes or hydraulic fracturing, is known as long‐period events. Characterized by low velocity and resonance, Krauklis waves help estimate fracture size and discern fluids in saturated fractures. Despite numerous theoretical models analyzing Krauklis waves, the existing paradigms are founded on static flow conditions. However, in geological contexts, the assumption of static flow may not be valid. We developed an experimental apparatus using a tri‐layer model consisting of a pair of aluminum plates to examine the effect of fluid flow on Krauklis waves. We employed an infusion syringe pump to inject fluids into the fracture under different flow rates. We used water, oil, and an aqueous solution of Polyethylene glycol as fracture fluids. We calculated resonant frequency, phase velocity, and quality factor to characterize the Krauklis waves. Our findings reveal that an increase in flow rate leads to a higher phase velocity, higher quality factor, and a shift to higher resonant frequency when the flow is in the direction of initial wave propagation while decreasing amplitude. Additionally, when the flow is in the opposite direction of initial wave propagation, we note higher wave absorption and distortion of the Krauklis waves. Our observations unequivocally affirm that fluid flow leaves strong signatures on the Krauklis waves, providing a robust basis for characterizing fluid dynamics within geological settings through the analysis of Krauklis wave. 
    more » « less
  2. SUMMARY Long-period seismic events (LPs) are observed within active volcanoes, hydrothermal systems and hydraulic fracturing. The prevailing model for LP seismic events suggests that they result from pressure disturbances in fluid-filled cracks that generate slow, dispersive waves known as Krauklis waves. These waves oscillate within the crack, causing it to act as a seismic resonator whose far-field radiations are known as LP events. Since these events are generated from fluid-filled cracks, they have been used to analyse fluid transport and fracturing in geological settings. Additionally, they are deemed precursors to volcanic eruptions. However, other mechanisms have been proposed to explain LP seismicity. Thus, a robust interpretation of these events requires understanding all parameters contributing to LP seismicity. To achieve this, for the first time, we have developed a physical model to investigate LP seismicity under controlled-source conditions. The physical model consists of a 30 cm × 15 cm × 0.2 cm crack embedded within a concrete slab with dimensions of 3 m × 3 m × 0.24 m. Using this apparatus, we investigate fundamental factors affecting long-period seismic signals, including crack stiffness, fluid density and viscosity, radiation patterns and triggering location. Our findings are consistent with the theoretical model for Krauklis waves within a fluid-filled crack. In this study, we examine the interplay between fluid properties and characteristics of waves within and radiated from the crack model. Records from a pressure transducer within the crack model have the same frequency characteristics as the surface sensors, indicating that the surface sensors are recording the crack waves. Because the crack stiffness parameters for all the fluids are relatively high, fluid density variations have a larger effect on the crack wave frequency, with higher density fluids yielding lower resonance frequencies. Similarly, the quality factor (Q) decreases with increasing fluid density. We also find that an increase in fluid viscosity along with the increased fluid density results in a decrease in resonance frequency and Q. Trigger locations at the middle of the crack length and width most effectively resonated the first and second transverse modes. Thus, this physical model can offer new horizons in understanding LP seismicity and bridge the gap between theoretical models and observed LP signals. 
    more » « less
  3. Abstract Dilatant hardening is one proposed mechanism that causes slow earthquakes along faults. Previous experiments and models show that dilatant hardening can stabilize fault rupture and slip in several lithologies. However, few studies have systematically measured the mechanical behavior across the transition from dynamic to slow rupture or considered how the associated damage varies. To constrain the processes and scales of dilatant hardening, we conducted triaxial compression experiments on cores of Crab Orchard sandstone and structural analyses using micro‐computed tomography imaging and petrographic analysis. Experiments were conducted at an effective confining pressure of ∼10 MPa, while varying confining pressure (10–130 MPa) and pore fluid pressure (1–120 MPa). Above 15 MPa pore fluid pressure, dilatant hardening slows the rate of fault rupture and slip and deformation becomes more distributed amongst multiple faults as microfracturing increases. The resulting increase in fracture energy has the potential to control fault slip behavior. 
    more » « less
  4. ABSTRACT Microearthquakes can be dynamically triggered in southern California by remote earthquakes. However, directly connecting dynamic triggering mechanisms with observational data remains challenging. One proposed failure mechanism suggests that both the amplitude and duration of cyclic fatigue caused by the passing seismic wave contribute to triggering occurrence. Here, we measure dynamic strains recorded by borehole strainmeters in the Anza section of the San Jacinto fault zone from 710 earthquakes that occurred over 300 km away between 2008 and 2017 to systematically investigate the role of elevated and sustained strain in controlling dynamic triggering. We design a suite of tests to evaluate whether specific amplitude thresholds and durations of strain can predict dynamic triggering cases. We further test whether the peak dynamic strain (PDS) can predict triggering occurrence in combination with the strain amplitude and duration. Based on these tests, there is no strain amplitude–duration threshold that can distinguish triggering occurrence in Anza. Dynamic triggering is more likely to occur if a remote earthquake causes a PDS above 100 nanostrain, though many cases were triggered at smaller PDSs. The lack of clear correlation between triggering and characteristics of the dynamic strain field suggests that the tested features of the incoming waves do not determine triggering occurrence and local fault conditions and slip processes are more important in controlling dynamic triggering in Anza. 
    more » « less
  5. ABSTRACT Fault zones exhibit geometrical complexity and are often surrounded by multiscale fracture networks within their damage zones, potentially influencing rupture dynamics and near-field ground motions. In this study, we investigate the ground-motion characteristics of cascading ruptures across damage zone fracture networks of moderate-size earthquakes (Mw 5.5–6.0) using high-resolution 3D dynamic rupture simulations. Our models feature a listric normal fault surrounded by more than 800 fractures, emulating a major fault and its associated damage zone. We analyze three cases: a cascading rupture propagating within the fracture network (Mw 5.5), a non-cascading main-fault rupture with off-fault fracture slip (Mw 6.0), and a main-fault rupture without a fracture network (Mw 6.0). Cascading ruptures within the fracture network produce distinct ground-motion signatures with enriched high-frequency content, arising from simultaneous slip of multiple fractures and parts of the main fault, resembling source coda-wave-like signatures. This case shows elevated near-field characteristic frequency (fc) and stress drop, approximately an order of magnitude higher than the estimation directly on the fault of the dynamic rupture simulation. The inferred fc of the modeled vertical ground-motion components reflects the complexity of the radiation pattern and rupture directivity of fracture-network cascading earthquakes. We show that this is consistent with observations of strong azimuthal dependence of corner frequency in the 2009–2016 central Apennines, Italy, earthquake, sequence. Simulated ground motions from fracture-network cascading ruptures also show pronounced azimuthal variations in peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration, with average PGA nearly double that of the non-cascading cases. Cascading ruptures radiate high-frequency seismic energy, yield nontypical ground-motion characteristics including coda-wave-like signatures, and may result in a significantly higher seismologically inferred stress drop and PGA. Such outcomes emphasize the critical role of fault-zone complexity in affecting rupture dynamics and seismic radiation and have important implications for physics-based seismic hazard assessment. 
    more » « less