skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 6, 2026

Title: Ground-Motion Characteristics of Cascading Earthquakes in a Multiscale Fracture Network
ABSTRACT Fault zones exhibit geometrical complexity and are often surrounded by multiscale fracture networks within their damage zones, potentially influencing rupture dynamics and near-field ground motions. In this study, we investigate the ground-motion characteristics of cascading ruptures across damage zone fracture networks of moderate-size earthquakes (Mw 5.5–6.0) using high-resolution 3D dynamic rupture simulations. Our models feature a listric normal fault surrounded by more than 800 fractures, emulating a major fault and its associated damage zone. We analyze three cases: a cascading rupture propagating within the fracture network (Mw 5.5), a non-cascading main-fault rupture with off-fault fracture slip (Mw 6.0), and a main-fault rupture without a fracture network (Mw 6.0). Cascading ruptures within the fracture network produce distinct ground-motion signatures with enriched high-frequency content, arising from simultaneous slip of multiple fractures and parts of the main fault, resembling source coda-wave-like signatures. This case shows elevated near-field characteristic frequency (fc) and stress drop, approximately an order of magnitude higher than the estimation directly on the fault of the dynamic rupture simulation. The inferred fc of the modeled vertical ground-motion components reflects the complexity of the radiation pattern and rupture directivity of fracture-network cascading earthquakes. We show that this is consistent with observations of strong azimuthal dependence of corner frequency in the 2009–2016 central Apennines, Italy, earthquake, sequence. Simulated ground motions from fracture-network cascading ruptures also show pronounced azimuthal variations in peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration, with average PGA nearly double that of the non-cascading cases. Cascading ruptures radiate high-frequency seismic energy, yield nontypical ground-motion characteristics including coda-wave-like signatures, and may result in a significantly higher seismologically inferred stress drop and PGA. Such outcomes emphasize the critical role of fault-zone complexity in affecting rupture dynamics and seismic radiation and have important implications for physics-based seismic hazard assessment.  more » « less
Award ID(s):
2121568 2311206 2311208
PAR ID:
10633051
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Bulletin of the Seismological Society of America
ISSN:
0037-1106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fault‐damage zones comprise multiscale fracture networks that may slip dynamically and interact with the main fault during earthquake rupture. Using 3D dynamic rupture simulations and scale‐dependent fracture energy, we examine dynamic interactions of more than 800 intersecting multiscale fractures surrounding a listric fault, emulating a major listric fault and its damage zone. We investigate 10 distinct orientations of maximum horizontal stress, probing the conditions necessary for sustained slip within the fracture network or activating the main fault. Additionally, we assess the feasibility of nucleating dynamic rupture earthquake cascades from a distant fracture and investigate the sensitivity of fracture network cascading rupture to the effective normal stress level. We model either pure cascades or main fault rupture with limited off‐fault slip. We find that cascading ruptures within the fracture network are dynamically feasible under certain conditions, including: (a) the fracture energy scales with fracture and fault size, (b) favorable relative pre‐stress of fractures within the ambient stress field, and (c) close proximity of fractures. We find that cascading rupture within the fracture network discourages rupture on the main fault. Our simulations suggest that fractures with favorable relative pre‐stress, embedded within a fault damage zone, may lead to cascading earthquake rupture that shadows main fault slip. We find that such off‐fault events may reach moment magnitudes up toMw ≈ 5.5, comparable to magnitudes that can be otherwise hosted by the main fault. Our findings offer insights into physical processes governing cascading earthquake dynamic rupture within multiscale fracture networks. 
    more » « less
  2. Abstract Seismic faults are surrounded by damaged rocks with reduced rigidity and enhanced attenuation. These damaged fault zone structures can amplify seismic waves and affect earthquake dynamics, yet they are typically omitted in physics‐based regional ground motion simulations. We report on the significant effects of a shallow, flower‐shaped fault zone in foreshock‐mainshock 3D dynamic rupture models of the 2019 Ridgecrest earthquake sequence. We find that the fault zone structure both amplifies and reduces ground motions not only locally but at distances exceeding 100 km. This impact on ground motions is frequency‐ and magnitude‐dependent, particularly affecting higher frequency ground motions from the foreshock because its corner frequency is closer to the fault zone's fundamental eigenfrequency. Within the fault zone, the shallow transition to a velocity‐strengthening frictional regime leads to a depth‐dependent peak slip rate increase of up to 70% and confines fault zone‐induced supershear transitions mostly to the fault zone's velocity‐weakening roots. However, the interplay of fault zone waves, free surface reflections, and rupture directivity can generate localized supershear rupture, even in narrow velocity‐strengthening regions, which are typically thought to inhibit supershear rupture. This study demonstrates that shallow fault zone structures may significantly affect intermediate‐ and far‐field ground motions and cause localized supershear rupture penetrating into velocity‐strengthening regions, with important implications for seismic hazard assessment. 
    more » « less
  3. Abstract Using a novel high‐performance computing implementation of a nonlinear continuum damage‐breakage model, we explore interactions between 3D co‐seismic off‐fault damage, seismic radiation, and rupture dynamics. Our simulations demonstrate that off‐fault damage enhances high‐frequency wave radiation above 1 Hz, reduces rupture speed and alters the total kinetic energy. We identify distinct damage regimes separated by solid‐granular transition, with smooth distributions under low damage conditions transitioning to localized, mesh‐independent shear bands upon reaching brittle failure. The shear band orientations depend systematically on the background stress and agree with analytical predictions. The brittle damage inhibits transitions to supershear rupture propagation and the rupture front strain field results in locally reduced damage accumulation during supershear transition. The dynamically generated damage yields uniform and isotropic ratios of fault‐normal to fault‐parallel high‐frequency ground motions. Co‐seismic damage zones exhibit depth‐dependent width variations, becoming broader near the Earth's surface consistent with field observations, even under uniform stress conditions. We discover a new delayed dynamic triggering mechanism in multi‐fault systems, driven by reductions in elastic moduli and the ensuing stress heterogeneities in 3D tensile fault step‐overs. This mechanism affects the static and dynamic stress fields and includes the formation of high shear‐traction fronts around localized damage zones. The brittle damage facilitates rupture cascading across faults, linking delay times directly to damage rheology and fault zone evolution. Our results help explain near‐fault high‐frequency isotropic radiation and delayed rupture triggering, improving our understanding of earthquake processes, seismic wavefields and fault system interactions. 
    more » « less
  4. Abstract The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ. 
    more » « less
  5. Abstract Dynamic rupture simulations generate synthetic waveforms that account for nonlinear source and path complexity. Here, we analyze millions of spatially dense waveforms from 3D dynamic rupture simulations in a novel way to illuminate the spectral fingerprints of earthquake physics. We define a Brune-type equivalent near-field corner frequency (fc) to analyze the spatial variability of ground-motion spectra and unravel their link to source complexity. We first investigate a simple 3D strike-slip setup, including an asperity and a barrier, and illustrate basic relations between source properties and fc variations. Next, we analyze >13,000,000 synthetic near-field strong-motion waveforms generated in three high-resolution dynamic rupture simulations of real earthquakes, the 2019 Mw 7.1 Ridgecrest mainshock, the Mw 6.4 Searles Valley foreshock, and the 1992 Mw 7.3 Landers earthquake. All scenarios consider 3D fault geometries, topography, off-fault plasticity, viscoelastic attenuation, and 3D velocity structure and resolve frequencies up to 1–2 Hz. Our analysis reveals pronounced and localized patterns of elevated fc, specifically in the vertical components. We validate such fc variability with observed near-fault spectra. Using isochrone analysis, we identify the complex dynamic mechanisms that explain rays of elevated fc and cause unexpectedly impulsive, localized, vertical ground motions. Although the high vertical frequencies are also associated with path effects, rupture directivity, and coalescence of multiple rupture fronts, we show that they are dominantly caused by rake-rotated surface-breaking rupture fronts that decelerate due to fault heterogeneities or geometric complexity. Our findings highlight the potential of spatially dense ground-motion observations to further our understanding of earthquake physics directly from near-field data. Observed near-field fc variability may inform on directivity, surface rupture, and slip segmentation. Physics-based models can identify “what to look for,” for example, in the potentially vast amount of near-field large array or distributed acoustic sensing data. 
    more » « less