skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facile micro-fabrication techniques for rapid manufacturing of gallium-based liquid metal passive frequency selective surfaces
This presentation reports different methods of making gallium-based liquid metal (LM) microfluidics passive frequency selective surfaces (FSS). In the first method Si wafer was dry-etched to form a mold and PDMS was replicated from the Si mold to create microfluidic channels with 5x5 array of 300μm width and 200 μm height for Jerusalem cross bars structure, surrounded by four fixed 2 x 1 x 0.2 mm structures. A PDMS lid having 1 mm diameter holes obtained from SLA 3D printed pillar array was aligned and bonded to the replicated PDMS to create sealed microfluidic channels. The bonded structure was placed with lid upwards in an open top 3D printed container measuring 64mm x 64mmarea and 25 mm height. LM was flooded into the container and loaded in Temescal e-beam evaporator at atmospheric pressure. Pressure in evaporator was dropped to 5.75 x 10-6Torr. After a vacuum period of 2 hours LM filling takes place in microfluidic structures because of positive pressure differential introduced by atmospheric pressure. In second method 70 μmthick SU8-2075 stencil consisting of a patterned 1x1 array of see-through FSS structure of above-mentioned dimensions was released from oxidized Si wafer using7:1 BOE. The SU8-2075 stencil was placed over a partially cured PDMS. After complete PDMS curing, an airbrush filled with LM operating at 36 psi with spraying time of less than 5 seconds, placed 4-5 cm over the stencil yields the patterned 1x1 FSS structure after removal of SU8-2075.  more » « less
Award ID(s):
1908779
PAR ID:
10292699
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The 5-6th Thermal and Fluids Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper presents a novel technique to fabricate metallic nanowires in selective areas on a Si substrate. Thermoplastic drawing of viscous metallic glass from cavities etched in Si can produce metallic nanowires. The length and diameter of nanowires can be controlled by adjusting the drawing conditions without changing the Si mold. A thin metal shadow mask is stacked above the Si mold during thermoplastic drawing to fabricate the nanowires only in specific locations. The mask restricts the flow of metallic glass to predefined shapes on the mask, resulting in the formation of nanowires in selected areas on Si. An Al foil-based mask made by a benchtop vinyl cutter is used to demonstrate the proof-of-concept. Even a simple Al foil mask enables the positioning of metallic nanowires in selective areas as small as 200 µm on Si. The precision of the vinyl cutter limits the smallest dimensions of the patterned areas, which can be further improved by using laser-fabricated stencil masks. Results show that a single row of metallic glass nanowires can be patterned on Si using selective thermoplastic drawing. Controllable positioning of metallic nanowires on substrates can enable new applications and characterization techniques for nanostructures. 
    more » « less
  2. Nguyen, Nam-Trung; Munoz, Rodrigo Alejandro; Kalinke, Cristiane (Ed.)
    Engineering microfluidic devices relies on the ability to manufacture sub-100 micrometer fluidic channels. Conventional lithographic methods provide high resolution but require costly exposure tools and outsourcing of masks, which extends the turnaround time to several days. The desire to accelerate design/test cycles has motivated the rapid prototyping of microfluidic channels; however, many of these methods (e.g., laser cutters, craft cutters, fused deposition modeling) have feature sizes of several hundred microns or more. In this paper, we describe a 1-day process for fabricating sub-100 µm channels, leveraging a low-cost (USD 600) 8K digital light projection (DLP) 3D resin printer. The soft lithography process includes mold printing, post-treatment, and casting polydimethylsiloxane (PDMS) elastomer. The process can produce microchannels with 44 µm lateral resolution and 25 µm height, posts as small as 400 µm, aspect ratio up to 7, structures with varying z-height, integrated reservoirs for fluidic connections, and a built-in tray for casting. We discuss strategies to obtain reliable structures, prevent mold warpage, facilitate curing and removal of PDMS during molding, and recycle the solvents used in the process. To our knowledge, this is the first low-cost 3D printer that prints extruded structures that can mold sub-100 µm channels, providing a balance between resolution, turnaround time, and cost (~USD 5 for a 2 × 5 × 0.5 cm^3 chip) that will be attractive for many microfluidics labs. 
    more » « less
  3. III-Nitride light-emitting diodes (LEDs) and laser diodes (LDs) are light sources covering ultraviolet (UV) and visible spectral regimes, which offer benefits including compact size, wavelength tuning, long lifetime, and sustainability. UV light sources have a range of applications in the fields of biology and medicine, such as sterilization and the purification of both water and air, where visible light emitters have been used in miniaturized photonic devices for optogenetic applications and other light-based therapies. Those III-Nitride light sources provide tremendous potential to be integrated with silicon (Si)-based lab-on-a-chip (LOC) technology, which typically requires the coupling of an external light source through fiber optic cable, limiting the field deployment of the devices. Integrating an on-chip III-Nitride light source with these devices opens the door to complete LOC technology, allowing for the simultaneous detection of multiple bio agents on a single platform without the need for external photonic sources. While most integrated microsystems still rely on wafer bonding at the device or wafer level, one promising method to achieve the integration of III-nitride UV and visible LEDs and LDs with conventional Si photonics and complementary metal-oxide-semiconductor (CMOS) platforms is through the use of micro-transfer printing (µTP). µTP has greater tolerances in alignment than techniques such as flip-chip integration and allows for the transfer of many devices at once. Additionally, the µTP process does not call for the complex and high temperature processing required for standard wafer bonding or necessitate complicated growth and lattice matching needed for monolithic integration. To enable µTP, an elastomeric, such as polydimethylsiloxane (PDMS), is utilized to create a transfer stamp that is employed for the precise selection of fabricated semiconductor devices for transfer from a source wafer to a target wafer. III-Nitride LEDs or LDs epitaxial structures are grown on a source wafer and fabricated through the creation of tethered coupons, or individual devices. This is accomplished by utilizing III-nitride materials grown on (111) Si. These devices can be fabricated through standard lithography and etching processes, etching down to the (111) Si substrate. A larger mesa can be patterned and etched into the Si substrate, exposing the sidewalls for wet chemical etching. The finished devices are then encapsulated in SiNxthrough plasma enhanced chemical vapor deposition (PECVD), which is patterned through standard lithography to define tethers and anchors for the subsequent wet etch. The fabricated devices are oriented in such a way as to take advantage of the difference in etch rates (>100x) of Si(110) and Si(111) in potassium hydroxide (KOH), where etching proceeds along the <110> direction. After KOH etching, the devices are left encapsulated in SiNxand suspended over the silicon substrate with an air gap, while the anchors and tethers are left largely unaffected.This enables the elastomer stamp to press down, breaking the tethers, and releasing the device. The stamp is then able to transfer the device to a target wafer that has been coated and patterned with InterVia, a spin-on dielectric material that acts as an adhesion layer. The stamp is pressed into the target wafer in such a way that the device is adhered to the target and released from the elastomer stamp. This technique can be applied to LEDs and LDs grown on (111) Si, allowing for the heterogeneous integration of III-nitride LED and LDs with conventional CMOS and Si photonic integrated circuits (PICs) as on-chip light sources, opening the door to complete LOC technology without the need for additional external photonic sources. 
    more » « less
  4. Modulations of fluid flow inside the bone intramedullary cavity has been found to stimulate bone cellular activities and augment bone growth. However, study on the efficacy of the fluid modulation has been limited to external syringe pumps connected to the bone intramedullary cavity through the skin tubing. We report an implantable magnetic microfluidic pump which is suitable for in vivo studies in rodents. A compact microfluidic pump (22 mm diameter, 5 mm in thickness) with NdFeB magnets was fabricated in polydimethylsiloxane (PDMS) using a set of stainless-steel molds. An external actuator with a larger magnet was used to wirelessly actuate the magnetic microfluidic pump. The characterization of the static pressure of the microfluidic pump as a function of size of magnets was assessed. The dynamic pressure of the pump was also characterized to estimate the output of the pump. The magnetic microfluidic pump was implanted into the back of a Fischer-344 rat and connected to the intramedullary cavity of the femur using a tube. On-demand wireless magnetic operation using an actuator outside of the body was found to induce pressure modulation of up to 38 mmHg inside the femoral intramedullary cavity of the rat. 
    more » « less
  5. Jang, Hae Lin (Ed.)
    3D cell culture models have gained popularity in recent years as an alternative to animal and 2D cell culture models for pharmaceutical testing and disease modeling. Polydimethylsiloxane (PDMS) is a cost-effective and accessible molding material for 3D cultures; however, routine PDMS molding may not be appropriate for extended culture of contractile and metabolically active tissues. Failures can include loss of culture adhesion to the PDMS mold and limited culture surfaces for nutrient and waste diffusion. In this study, we evaluated PDMS molding materials and surface treatments for highly contractile and metabolically active 3D cell cultures. PDMS functionalized with polydopamine allowed for extended culture duration (14.8 ± 3.97 days) when compared to polyethylamine/glutaraldehyde functionalization (6.94 ± 2.74 days); Additionally, porous PDMS extended culture duration (16.7 ± 3.51 days) compared to smooth PDMS (6.33 ± 2.05 days) after treatment with TGF-β2 to increase culture contraction. Porous PDMS additionally allowed for large (13 mm tall × 8 mm diameter) constructs to be fed by diffusion through the mold, resulting in increased cell density (0.0210 ± 0.0049 mean nuclear fraction) compared to controls (0.0045 ± 0.0016 mean nuclear fraction). As a practical demonstration of the flexibility of porous PDMS, we engineered a vascular bioartificial muscle model (VBAM) and demonstrated extended culture of VBAMs anchored with porous PDMS posts. Using this model, we assessed the effect of feeding frequency on VBAM cellularity. Feeding 3×/week significantly increased nuclear fraction at multiple tissue depths relative to 2×/day. VBAM maturation was similarly improved in 3×/week feeding as measured by nuclear alignment (23.49° ± 3.644) and nuclear aspect ratio (2.274 ± 0.0643) relative to 2x/day (35.93° ± 2.942) and (1.371 ± 0.1127), respectively. The described techniques are designed to be simple and easy to implement with minimal training or expense, improving access to dense and/or metabolically active 3D cell culture models. 
    more » « less