skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The multi-field, rapid-turn inflationary solution
A bstract There are well-known criteria on the potential and field-space geometry for determining if slow-roll, slow-turn, multi-field inflation is possible. However, even though it has been a topic of much recent interest, slow-roll, rapid-turn inflation only has such criteria in the restriction to two fields. In this work, we generalize the two-field, rapid-turn inflationary attractor to an arbitrary number of fields. We quantify a limit, which we dub extreme turning , in which rapid-turn solutions may be found efficiently and develop methods to do so. In particular, simple results arise when the covariant Hessian of the potential has an eigenvector in close alignment with the gradient — a situation we find to be common and we prove generic in two-field hyperbolic geometries. We verify our methods on several known rapid-turn models and search two type-IIA constructions for rapid-turn trajectories. For the first time, we are able to efficiently search for these solutions and even exclude slow-roll, rapid-turn inflation from one potential.  more » « less
Award ID(s):
1914679
PAR ID:
10292733
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Strongly non-geodesic, or rapidly turning trajectories in multifield inflation have attracted much interest recently from both theoretical and phenomenological perspectives. Most models with large turning rates in the literature are formulated as effective field theories. In this paper we investigate rapid-turn inflation in supergravity as a first step towards understanding them in string theory. We find that large turning rates can be generated in a wide class of models, at the cost of high field space curvature. In these models, while the inflationary trajectories are stable, one Hessian eigenvalue is always tachyonic and large, in Hubble units. Thus, these models satisfy the de Sitter swampland conjecture along the inflationary trajectory. However, the high curvatures underscore the difficulty of obtaining rapid-turn inflation in realistic string-theoretical models.In passing, we revisit the η -problem in multifield slow-roll inflation and show that it does not arise, inasmuch as the inflatons, ϕ i , can all be heavier (in absolute value) that the Hubble scale: | m i | /H >1, ∀ i . 
    more » « less
  2. In loop quantum cosmology, the slow-roll inflation is generic, and when the kinetic energy of the scalar field dominates at the bounce, the evolution of the Friedmann-Lemaître-Robertson-Walker universe will go through three distinguishable epochs, bouncing, transition, and finally slow-roll inflation, before the reheating commences. The bouncing dynamics are insensitive of the potential and initial conditions, so that the expansion factor and the scalar field can be described uniquely by a universal solution during this epoch. After about 105 Planck time, the epoch of transition starts and the universe rapidly turns over from the kinetic energy dominated state to the potential energy dominated one, whereby the slow-roll inflationary phase begins. In this paper, we consider the power law plateau potential and study the pre-inflationary cosmology for different sets of initial conditions, so that during the slow-roll inflation epoch enough e-folds will be produced. Considering the generalized reheating and comparing with the recent Planck 2018 data, we are able to constrain the total number of e-folds (NT) from the bounce till today to be consistent with the current observable universe. Depending on the matter driving the reheating (subject to the different dominant equations of states), we report the observationally allowed NT and reheating temperature and find in particular NT≃127, which is significantly different from the one NT≳141 obtained previously without considering the reheating phase. 
    more » « less
  3. Abstract In light of the recent swampland conjectures, we explore quantum cosmology and eternal inflation beyond the slow roll regime. We consider a model of a closed universe with a scalar field ϕ in the framework of tunneling approach to quantum cosmology. The scalar field potential is assumed to have a maximum at ϕ = 0 and can be approximated in its vicinity as V ( ϕ )≈ 3 H 2 - 1/2 m 2 ϕ 2 . Using the instanton method, we find that for m < 2 H the dominant nucleation channel for the universe is tunneling to a homogeneous, spherical de Sitter space. For larger values of m / H , the most probable tunneling is to an inhomogeneous closed universe with a domain wall wrapped around its equator. We determine the quantum state of the field ϕ in the nucleated universe by solving the Wheeler-DeWitt equation with tunneling boundary conditions. Our results agree with earlier work which assumed a slow-roll regime m ≪ H . We finally show that spherical universes nucleating with m < 2 H undergo stochastic eternal inflation with inflating regions forming a fractal of dimension d > 2. For larger values of m the field ϕ is unstable with respect to formation of domain walls and cannot be described by a perturbative stochastic approach. 
    more » « less
  4. A<sc>bstract</sc> A model of supergravity inflation we recently proposed can produce slow roll inflation and a realistic spectrum of particles even without F-term supersymmetry breaking. Supersymmetry is broken only by a D-term induced by a recently discovered new type of Fayet-Iliopoulos (FI) term. Almost all supersymmetric partners of the standard model fields can get masses as high as the inflationary Hubble scale. The exception is gauginos, for which the vanishing of F-terms implies an exact cancellation that keeps their masses exactly zero. To cure this problem without spoiling the simplicity of our model we introduce a new term that further enlarges the space of supergravity effective actions. It is an F-term that, similarly to the new FI term, becomes singular in the supersymmetric limit. We show that this term can produce large gaugino masses without altering the spectrum of other states and without lowering the cutoff of the effecive theory. 
    more » « less
  5. Abstract We consider cosmological models based on the spectral action formulation of (modified) gravity. We analyze the coupled effects, in this model, of the presence of nontrivial cosmic topology and of fractality in the large scale structure of spacetime. We show that the topology constrains the possible fractal structures, and in turn the correction terms to the spectral action due to fractality distinguish the various cosmic topology candidates, with effects detectable in a slow-roll inflation scenario, through the power spectra of the scalar and tensor fluctuations. We also discuss explicit effects of the presence of fractal structures on the gravitational waves equations. 
    more » « less