Line charts are often used to convey high level information about time series data. Unfortunately, these charts are not always described in text, and as a result are often inaccessible to users with visual impairments who rely on screen readers. In these situations, an automated system that can describe the overall trend in a chart would be desirable. This paper presents a novel approach to classifying trends in line chart images, for use in existing chart summarization tools. Previous projects have introduced approaches to automatically summarize line charts, but have thus far been unable to describe chart trends with sufficient accuracy for real-world applications. Instead of classifying an image’s trend via a convolutional neural network (CNN) system, as has been done previously, we present an architecture similar to bag-of-words (BoW) techniques for computer vision, mapping the image classification problem to an analogous natural language problem. We divided images into matrices of image patches which we then each treated as a series of “visual words” which were used to classify each image. We utilized natural language processing (NLP) word embeddings techniques to to create embeddings of visual words that allowed us to model contextual similarity between patches. We trained a linear support vector machine (SVM) model using these patch embeddings as inputs to classify the chart trend. We compared this method against a ResNet classifier pre-trained on ImageNet. Our experimental results showed that the novel approach presented in this paper outperforms existing approaches.
more »
« less
Towards Understanding How Readers Integrate Charts and Captions: A Case Study with Line Charts
Charts often contain visually prominent features that draw attention to aspects of the data and include text captions that emphasize aspects of the data. Through a crowdsourced study, we explore how readers gather takeaways when considering charts and captions together. We first ask participants to mark visually prominent regions in a set of line charts. We then generate text captions based on the prominent features and ask participants to report their takeaways after observing chart-caption pairs. We find that when both the chart and caption describe a high-prominence feature, readers treat the doubly emphasized high-prominence feature as the takeaway; when the caption describes a low-prominence chart feature, readers rely on the chart and report a higher-prominence feature as the takeaway. We also find that external information that provides context, helps further convey the caption’s message to the reader. We use these findings to provide guidelines for authoring effective chart-caption pairs.
more »
« less
- Award ID(s):
- 1714647
- PAR ID:
- 10292826
- Date Published:
- Journal Name:
- Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
- Page Range / eLocation ID:
- 1 to 11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Evaluating the quality of accessible image captions with human raters is difficult, as it may be difficult for a visually impaired user to know how comprehensive a caption is, whereas a sighted assistant may not know what information a user will need from a caption. To explore how image captioners and caption consumers assess caption content, we conducted a series of collaborative captioning sessions in which six pairs, consisting of a blind person and their sighted partner, worked together to discuss, create, and evaluate image captions. By making captioning a collaborative task, we were able to observe captioning strategies, to elicit questions and answers about image captions, and to explore blind users’ caption preferences. Our findings provide insight about the process of creating good captions and serve as a case study for cross-ability collaboration between blind and sighted people.more » « less
-
To facilitate the reuse of existing charts, previous research has examined how to obtain a semantic understanding of a chart by deconstructing its visual representation into reusable components, such as encodings. However, existing deconstruction approaches primarily focus on chart styles, handling only basic layouts. In this paper, we investigate how to deconstruct chart layouts, focusing on rectangle-based ones as they cover not only 17 chart types but also advanced layouts (e.g., small multiples, nested layouts). We develop an interactive tool, called Mystique, adopting a mixed-initiative approach to extract the axes and legend, and deconstruct a chart’s layout into four semantic components: mark groups, spatial relationships, data encodings, and graphical constraints. Mystique employs a wizard interface that guides chart authors through a series of steps to specify how the deconstructed components map to their own data. On 150 rectangle-based SVG charts, Mystique achieves above 85% accuracy for axis and legend extraction and 96% accuracy for layout deconstruction. In a chart reproduction study, participants could easily reuse existing charts on new datasets. We discuss the current limitations of Mystique and future research directions.more » « less
-
Recent research has investigated automatic methods for identifying how important each word in a text is for the overall message, in the context of people who are Deaf and Hard of Hearing (DHH) viewing video with captions. We examine whether DHH users report benefits from visual highlighting of important words in video captions. In formative interview and prototype studies, users indicated a preference for underlining of 5%-15% of words in a caption text to indicate that they are important, and they expressed an interest for such text markup in the context of educational lecture videos. In a subsequent user study, 30 DHH participants viewed lecture videos in two forms: with and without such visual markup. Users indicated that the videos with captions containing highlighted words were easier to read and follow, with lower perceived task-load ratings, compared to the videos without highlighting. This study motivates future research on caption highlighting in online educational videos, and it provides a foundation for how to evaluate the efficacy of such systems with users.more » « less
-
null (Ed.)We propose JECL, a method for clustering image-caption pairs by training parallel encoders with regularized clustering and alignment objectives, simultaneously learning both representations and cluster assignments. These image-caption pairs arise frequently in high-value applications where structured training data is expensive to produce, but free-text descriptions are common. JECL trains by minimizing the Kullback-Leibler divergence between the distribution of the images and text to that of a combined joint target distribution and optimizing the Jensen-Shannon divergence between the soft cluster assignments of the images and text. Regularizers are also applied to JECL to prevent trivial solutions. Experiments show that JECL outperforms both single-view and multi-view methods on large benchmark image-caption datasets, and is remarkably robust to missing captions and varying data sizes.more » « less
An official website of the United States government

