skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Delay sensitivity-driven congestion mitigation for HPC systems
Modern high-performance computing (HPC) systems concurrently execute multiple distributed applications that contend for the high-speed network leading to congestion. Consequently, application runtime variability and suboptimal system utilization are observed in production systems. To address these problems, we propose Netscope, a congestion mitigation framework based on a novel delay sensitivity metric. Delay sensitivity of an application is used to quantify the impact of congestion on its runtime. Netscope uses delay sensitivity estimates to drive a congestion mitigation mechanism to selectively throttle applications that are less susceptible to congestion. We evaluate Netscope on two Cray Aries systems, including a production supercomputer, on common scientific applications. Our evaluation shows that Netscope has a low training cost and accurately estimates the impact of congestion on application runtime with a correlation between 0.7 and 0.9. Moreover, Netscope reduces application tail runtime increase by up to 16.3x while improving the median system utility by 12%.  more » « less
Award ID(s):
2029049
PAR ID:
10292980
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of The 35th ACM International Conference on Supercomputing (ICS ‘21)
Page Range / eLocation ID:
342 to 353
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Large-scale high-performance computing systems frequently experience a wide range of failure modes, such as reliability failures (e.g., hang or crash), and resource overload-related failures (e.g., congestion collapse), impacting systems and applications. Despite the adverse effects of these failures, current systems do not provide methodologies for proactively detecting, localizing, and diagnosing failures. We present Kaleidoscope, a near real-time failure detection and diagnosis framework, consisting of of hierarchical domain-guided machine learning models that identify the failing components, the corresponding failure mode, and point to the most likely cause indicative of the failure in near real-time (within one minute of failure occurrence). Kaleidoscope has been deployed on Blue Waters supercomputer and evaluated with more than two years of production telemetry data. Our evaluation shows that Kaleidoscope successfully localized 99.3% and pinpointed the root causes of 95.8% of 843 real-world production issues, with less than 0.01% runtime overhead. 
    more » « less
  2. Rapid delay variations in today’s access networks impair the QoE of low-latency, interactive applications, such as video conferencing. To tackle this problem, we propose Athena, a framework that correlates high-resolution measurements from Layer 1 to Layer 7 to remove the fog from the window through which today’s video-conferencing congestion-control algorithms see the network. This cross-layer view of the network empowers the networking community to revisit and re-evaluate their network designs and application scheduling and rate-adaptation algorithms in light of the complex, heterogeneous networks that are in use today, paving the way for network-aware applications and application-aware networks. 
    more » « less
  3. Modern datacenter applications are concurrent, so they require synchronization to control access to shared data. Requests can contend for different combinations of locks, depending on application and request state. In this paper, we show that locks, especially blocking synchronization, can squander throughput and harm tail latency, even when the CPU is underutilized. Moreover, the presence of a large number of contention points, and the unpredictability in knowing which locks a request will require, make it difficult to prevent contention through overload control using traditional signals such as queueing delay and CPU utilization. We present Protego, a system that resolves these problems with two key ideas. First, it contributes a new admission control strategy that prevents compute congestion in the presence of lock contention. The key idea is to use marginal improvements in observed throughput, rather than CPU load or latency measurements, within a credit-based admission control algorithm that regulates the rate of incoming requests to a server. Second, it introduces a new latency-aware synchronization abstraction called Active Synchronization Queue Management (ASQM) that allows applications to abort requests if delays exceed latency objectives. We apply Protego to two real-world applications, Lucene and Memcached, and show that it achieves up to 3.3x more goodput and 12.2x lower 99th percentile latency than the state-of-the-art overload control systems while avoiding congestion collapse. 
    more » « less
  4. Balakrishnan, Mahesh; Ghobadi, Manya (Ed.)
    Modern datacenter applications are concurrent, so they require synchronization to control access to shared data. Requests can contend for different combinations of locks, depending on application and request state. In this paper, we show that locks, especially blocking synchronization, can squander throughput and harm tail latency, even when the CPU is underutilized. Moreover, the presence of a large number of contention points, and the unpredictability in knowing which locks a request will require, make it difficult to prevent contention through overload control using traditional signals such as queueing delay and CPU utilization. We present Protego, a system that resolves these problems with two key ideas. First, it contributes a new admission control strategy that prevents compute congestion in the presence of lock contention. The key idea is to use marginal improvements in observed throughput, rather than CPU load or latency measurements, within a credit-based admission control algorithm that regulates the rate of incoming requests to a server. Second, it introduces a new latency-aware synchronization abstraction called Active Synchronization Queue Management (ASQM) that allows applications to abort requests if delays exceed latency objectives. We apply Protego to two real-world applications, Lucene and Memcached, and show that it achieves up to 3.3x more goodput and 12.2x lower 99th percentile latency than the state-of-the-art overload control systems while avoiding congestion collapse. 
    more » « less
  5. Modern datacenter applications are concurrent, so they require synchronization to control access to shared data. Requests can contend for different combinations of locks, depending on application and request state. In this paper, we show that locks, especially blocking synchronization, can squander throughput and harm tail latency, even when the CPU is underutilized. Moreover, the presence of a large number of contention points, and the unpredictability in knowing which locks a request will require, make it difficult to prevent contention through overload control using traditional signals such as queueing delay and CPU utilization. We present Protego, a system that resolves these problems with two key ideas. First, it contributes a new admission control strategy that prevents compute congestion in the presence of lock contention. The key idea is to use marginal improvements in observed throughput, rather than CPU load or latency measurements, within a credit-based admission control algorithm that regulates the rate of incoming requests to a server. Second, it introduces a new latency-aware synchronization abstraction called Active Synchronization Queue Management (ASQM) that allows applications to abort requests if delays exceed latency objectives. We apply Protego to two real-world applications, Lucene and Memcached, and show that it achieves up to 3.3x more goodput and 12.2x lower 99th percentile latency than the state-of-the-art overload control systems while avoiding congestion collapse. 
    more » « less