skip to main content


Title: The role of electrical conductivity in radar wave reflection from glacier beds
Abstract. We have examined a general expression giving the specularreflection coefficient for a radar wave approaching a reflecting interfacewith normal incidence. The reflecting interface separates two homogeneousisotropic media, the properties of which are fully described by three scalarquantities: dielectric permittivity, magnetic permeability, and electricalconductivity. The derived relationship indicates that electricalconductivity should not be neglected a priori in glaciological investigations ofsubglacial materials and in ground-penetrating radar (GPR) studies of saturated sediments and bedrock,even at the high end of typical linear radar frequencies used in suchinvestigations (e.g., 100–400 MHz). Our own experience in resistivitysurveying in Antarctica, combined with a literature review, suggests that awide range of geologic materials can have electrical conductivity that ishigh enough to significantly impact the value of radar reflectivity.Furthermore, we have given two examples of prior studies in which inclusionof electrical conductivity in calculation of the radar bed reflectivity mayprovide an explanation for results that may be considered surprising if theimpact of electrical conductivity on radar reflection is neglected. Thecommonly made assumption that only dielectric permittivity of the two medianeeds to be considered in interpretation of radar reflectivity can lead toerroneous conclusions.  more » « less
Award ID(s):
1644187
NSF-PAR ID:
10293050
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Cryosphere
Volume:
14
Issue:
12
ISSN:
1994-0424
Page Range / eLocation ID:
4495 to 4506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have developed an algorithm for joint inversion of full-waveform ground-penetrating radar (GPR) and electrical resistivity (ER) data. The GPR data are sensitive to electrical permittivity through reflectivity and velocity, and electrical conductivity through reflectivity and attenuation. The ER data are directly sensitive to the electrical conductivity. The two types of data are inherently linked through Maxwell’s equations, and we jointly invert them. Our results show that the two types of data work cooperatively to effectively regularize each other while honoring the physics of the geophysical methods. We first compute sensitivity updates separately for the GPR and ER data using the adjoint method, and then we sum these updates to account for both types of sensitivities. The sensitivities are added with the paradigm of letting both data types always contribute to our inversion in proportion to how well their respective objective functions are being resolved in each iteration. Our algorithm makes no assumptions of the subsurface geometry nor the structural similarities between the parameters with the caveat of needing a good initial model. We find that our joint inversion outperforms the GPR and ER separate inversions, and we determine that GPR effectively supports ER in regions of low conductivity, whereas ER supports GPR in regions with strong attenuation. 
    more » « less
  2. Transport properties of doped conjugated polymers (CPs) have been widely analyzed with the Gaussian Disorder Model (GDM) in conjunction with hopping transport between localized states. These models reveal that even in highly doped CPs, a majority of carriers are still localized because dielectric permittivity of CPs is well below that of inorganic materials, making Coulomb interactions between carriers and dopant counter-ions much more pronounced. However, previous studies within the GDM did not consider the role of screening the dielectric interactions by carriers. Here we implement carrier screening in the Debye-H¨uckel formalism in our calculations of dopant-induced energetic disorder, which modifies the Gaussian density of states (DOS). Then we solve the Pauli Master Equation using Miller-Abrahams hopping rates with states from the resulting screened DOS to obtain conductivity and Seebeck coefficient across a broad range of carrier concentrations and compare them to measurements. Our results show that screening has significant impact on the shape of the DOS and consequently on carrier transport, particularly at high doping. We prove that the slope of Seebeck coefficient vs electric conductivity, which was previously thought to be universal, is impacted by screening and decreases for systems with small dopant-carrier separation, explaining our measurements. We also show that thermoelectric power factor is underestimated by a factor of ∼ 10 at higher doping concentrations if screening is neglected. We conclude that carrier screening plays a crucial role in curtailing dopant-induced energetic disorder, particularly at high carrier concentrations. 
    more » « less
  3. Abstract

    Recent results from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument have been interpreted as evidence of subsurface brine pooled beneath 1.3 km‐thick South Polar Layered Deposit (SPLD). This interpretation is based on the assumption that the regionally high strength of MARSIS radar reflections from the base of the ice cap is due to a strong contrast in dielectric permittivity across the basal interface. Here, we demonstrate that the high‐power reflections could instead be the result of a contrast in electric conductivity. While not explicitly excluding a liquid brine, our results open new potential explanations for the observed strong radar reflections, some of which do not require liquid brine beneath SPLD. Potential basal materials with suitably high conductivity include clays, metal‐bearing minerals, or saline ice.

     
    more » « less
  4. null (Ed.)
    Our previous studies showed that geometrical techniques including (1) metal layer offset, (2) stacked substrate design and (3) protruding substrate, either individually or combined, cannot solve high electric field issues in high voltage high-density wide bandgap (WBG) power modules. Then, for the first time, we showed that a combination of the aforementioned geometrical methods and the application of a nonlinear field-dependent conductivity (FDC) layer could address the issue. Simulations were done under a 50 Hz sinusoidal AC voltage per IEC 61287-1. However, in practice, the insulation materials of the envisaged WBG power modules will be under square wave voltage pulses with a frequency of up to a few tens of kHz and temperatures up to a few hundred degrees. The relative permittivity and electrical conductivity of aluminum nitride (AlN) ceramic, silicone gel, and nonlinear FDC materials that were assumed to be constant in our previous studies, may be frequency- and temperature-dependent, and their dependency should be considered in the model. This is the case for other papers dealing with electric field calculation within power electronics modules, where the permittivity and AC electrical conductivity of the encapsulant and ceramic substrate materials are assumed at room temperature and for a 50 or 60 Hz AC sinusoidal voltage. Thus, the big question that remains unanswered is whether or not electric field simulations are valid for high temperature and high-frequency conditions. In this paper, this technical gap is addressed where a frequency- and temperature-dependent finite element method (FEM) model of the insulation system envisaged for a 6.5 kV high-density WBG power module will be developed in COMSOL Multiphysics, where a protruding substrate combined with the application of a nonlinear FDC layer is considered to address the high field issue. By using this model, the influence of frequency and temperature on the effectiveness of the proposed electric field reduction method is studied. 
    more » « less
  5. Abstract

    We report on structural, microstructural, spectroscopic, dielectric, electrical, ferroelectric, ferromagnetic, and magnetodielectric coupling studies of BiFeO3–GdMnO3[(BFO)1–x–(GMO)x], wherexis the concentration of GdMnO3(x= 0.0, 0.025, 0.05, 0.075, 0.1, 0.15, and 0.2), nanocrystalline ceramic solid solutions by auto-combustion method. The analysis of structural property by Rietveld refinement shows the existence of morphotropic phase boundary (MPB) atx= 0.10, which is in agreement with the Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) studies. The average crystallite size obtained from the transmission electron microscopy (TEM) and x-ray line profile analysis was found to be 20–30 nm. The scanning electron micrographs show the uniform distribution of grains throughout the surface of the sample. The dielectric dispersion behavior fits very well with the Maxwell-Wagner model. The frequency dependent phase angle (θ) study shows the resistive nature of solid solutions at low frequency, whereas it shows capacitive behavior at higher frequencies. The temperature variation of dielectric permittivity shows dielectric anomaly at the magnetic phase transition temperature and shifting of the phase transition towards the lower temperature with increasing GMO concentration. The Nyquist plot showed the conduction mechanism is mostly dominated by grains and grain boundary resistances. The ac conductivity of all the samples follows the modified Jonscher model. The impedance and modulus spectroscopy show a non-Debye type relaxation mechanism which can be modeled using a constant phase element (CPE) in the equivalent circuit. The solid-solutions of BFO-GMO show enhanced ferromagnetic-like behavior at room temperature. The ferroelectric polarization measurement shows lossy ferroelectric behavior. The frequency dependent magnetocapacitance and magnetoimpedance clearly show the existence of intrinsic magnetodielectric coupling. The (BFO)1–x–(GMO)xsolid solutions withx= 0.025–0.075 show significantly higher magnetocapacitance and magnetoimpedance compared to the pure BFO.

     
    more » « less