skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Induced polarization effects in airborne transient electromagnetic data collected in the McMurdo Dry Valleys, Antarctica
SUMMARY Airborne electromagnetics (EM) is a geophysical tool well suited to mapping glacial and hydrogeological structures in polar environments. This non-invasive method offers significant spatial coverage without requiring access to the ground surface, enabling the mapping of geological units to hundreds of metres depth over highly varied terrain. This method shows great potential for large-scale surveys in polar environments, as common targets such as permafrost, ice and brine-rich groundwater systems in these settings can be easily differentiated because of their significant contrasts in electrical properties. This potential was highlighted in a 2011 airborne EM survey in the McMurdo Dry Valleys that mapped the existence of a large-scale regional groundwater system in Taylor Valley. A more comprehensive airborne EM survey was flown in November 2018 to broadly map potential groundwater systems throughout the region. Data collected in this survey displayed significant perturbations from a process called induced polarization (IP), an effect that can greatly limit or prevent traditional EM workflows from producing reliable geological interpretations. Here, we present several examples of observed IP signatures over a range of conditions and detail how workflows explicitly designed to handle IP effects can produce reliable geological interpretations and data fits in these situations. Future polar EM surveys can be expected to encounter strong IP effects given the likely presence of geological materials (e.g. ice and permafrost) that can accentuate the influence of IP.  more » « less
Award ID(s):
1644187 1643687 1643536
PAR ID:
10293052
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
226
Issue:
3
ISSN:
0956-540X
Page Range / eLocation ID:
1574 to 1583
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset documents the location and characteristics of 185 exotic tundra boulders found on the North Slope of Alaska, spanning observations from 1826 to 2025. These boulders—scattered across coastal tundra, estuarine margins, and barrier islands—represent a persistent but enigmatic feature of the Arctic landscape. Their lithologies, which include granite, quartzite, diabase, dolomite, chert, and gneiss, are exotic to the region and are widely interpreted to be ice-rafted debris deposited during Pleistocene highstands of the Arctic Ocean. Spatial and lithologic patterns suggest an origin in the Canadian Arctic Archipelago and Mackenzie River basin, transported westward by sea ice or icebergs during glacial periods. The dataset integrates georeferenced boulder locations from early exploration accounts (e.g., Leffingwell 1919; Stefansson 1910, Franklin and Richardson 1828), mid-century field surveys (MacCarthy 1958), geologic interpretations of offshore facies and provenance (Rodeick 1979) and USGS (U.S. Geological Survey) engineering geological maps (1980s), and modern field observations from the 2000s–2020s. Boulder characteristics—such as lithology, surface striations, and faceting—are included where available. These observations contribute to understanding of likely saline permafrost distribution, Arctic coastal dynamics, sea-level history, and the paleogeography of iceberg and sea-ice transport. They also provide a rare terrestrial window into ice-rafted sedimentation processes typically studied in marine environments. All data are curated in a comma separated spreadsheet with associated metadata to support future geomorphological, paleoclimatic, and sea-level modeling studies. The complete list of references is provided below: Barnes, P.W., 1982. Marine Ice-Pushed Boulder Ridge, Beaufort Sea, Alaska. ARCTIC 35, 312–316. https://doi.org/10.14430/arctic2330 Brigham, O.K., 1985. Marine stratigraphy and aaino-acid geochronology of the Gublk Fomatlon, western Arctic Coastal Plain, Alaska. USGS Open File Report 381. Dease, P.W., Simpson, T., 1838. An Account of the Recent Arctic Discoveries by Messrs. Dease and T. Simpson. The Journal of the Royal Geographical Society of London 8, 213–225. Franklin, J., Richardson, J., 1828. Narrative of a Second Expedition to the Shores of the Polar Sea, in the Years 1825, 1826, and 1827. Carey, Lea and Carey. Gibbs, A.E., Richmond, B.M., 2009. Oblique aerial photography of the Arctic coast of Alaska, Nulavik to Demarcation Point, August 7-10, 2006. US Geological Survey. Hopkins, D.M., Hartz, R.W., 1978. Coastal morphology, coastal erosion, and barrier islands of the Beaufort Sea, Alaska. US Geological Survey,. Jorgenson, M.T., 2011. Coastal region of northern Alaska, Guidebook to permafrost and related features (No.GB 10). Alaska Division of Geological and Geophysical Surveys. https://doi.org/10.14509/22762 McCarthy, G.R., 1958. Glacial Boulders on the Arctic Coast of Alaska. ARCTIC 11, 70–85. https://doi.org/10.14430/arctic3734 Naidu, A., Mowatt, T., 1992. Origin of gravels from the southern coast and continental shelf of the Beaufort Sea, Arctic Alaska, in: 1992 International Conference on Arctic Margins Proceedings Programs with Abstracts. pp. 351–356. O’Sullivan, J.B., 1961. Quaternary geology of the Arctic Coastal Plain, northern Alaska: Ames, Iowa, Iowa State University of Science and Technology, Ph.D. dissertation, 191 p., illust., maps. Iowa State University. Rawlinson, S.E., 1993. Surficial geology and morphology of the Alaskan central Arctic Coastal Plain (No. RI 93-1). Alaska Division of Geological and Geophysical Surveys. https://doi.org/10.14509/2484 Reimnitz, E., Ross, R., 1979. Lag deposits of boulders in Stefansson Sound, Beaufort Sea, Alaska (No.79–1205), Open-File Report. U.S. Geological Survey,. https://doi.org/10.3133/ofr791205 Rodeick, C.A., 1979. The origin, distribution, and depositional history of gravel deposits on the Beaufort Sea Continental Shelf, Alaska (No. 79–234), Open-File Report. U.S. Geological Survey,. https://doi.org/10.3133/ofr79234 Schrader, F.C., Peters, W.J., 1904. A reconnaissance in northern Alaska across the Rocky Mountains, along Koyukuk, John, Anaktuvuk, and Colville Rivers, and the Arctic coast to Cape Lisburne, in 1901, with notes (USGS Numbered Series No. 20), Professional Paper. U.S. Geological Survey, Washington, D.C. https://doi.org/10.3133/pp20 Simpson, 1855. Observations on the western Esquimaux and the country they inhabit?: from notes taken during two years at Point Barrow | CiNii Research [WWW Document]. URL https://cir.nii.ac.jp/crid/1130000795332231552 (accessed 6.10.23). Smith, P.S., Mertie, J.B., 1930. Geology and mineral resources of northwestern Alaska. USGS Report 1. Stefansson, V., 1910. Notes from the Arctic. Am. Geogr. SOC. Bull 42, 460–1. Williams, J.R., 1983. Engineering-geologic maps of northern Alaska, Wainwright quadrangle (No. 83–457), Open-File Report. U.S. Geological Survey. https://doi.org/10.3133/ofr83458 Williams, J.R., Carter, L.D., 1984. Engineering-geologic maps of northern Alaska, Barrow quadrangle (No.84–124), Open-File Report. U.S. Geological Survey. https://doi.org/10.3133/ofr84126 Williams, R.J., 1983. Engineering-geologic maps of northern Alaska, Meade River quadrangle (No. 83–294), Open-File Report. U.S. Geological Survey. https://doi.org/10.3133/ofr83325 Wolf, S.C., Reimnitz, E., Barnes, P.W., 1985. Pleistocene and Holocene seismic stratigraphy between the Canning River and Prudhoe Bay, Beaufort Sea, Alaska. US Geological Survey,. de Koven Leffingwell, E., 1908. Flaxman Island, a Glacial Remnant. The Journal of Geology 16, 56–63. https://doi.org/10.1086/621490 de Koven Leffingwell, E., 1919. The Canning river region, northern Alaska (No. 109). US Government Printing Office. 
    more » « less
  2. Sea ice thickness is a key parameter in the polar climate and ecosystem. Thermodynamic and dynamic processes alter the sea ice thickness. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provided a unique opportunity to study seasonal sea ice thickness changes of the same sea ice. We analyzed 11 large-scale (∼50 km) airborne electromagnetic sea thickness and surface roughness surveys from October 2019 to September 2020. Data from ice mass balance and position buoys provided additional information. We found that thermodynamic growth and decay dominated the seasonal cycle with a total mean sea ice thickness increase of 1.4 m (October 2019 to June 2020) and decay of 1.2 m (June 2020 to September 2020). Ice dynamics and deformation-related processes, such as thin ice formation in leads and subsequent ridging, broadened the ice thickness distribution and contributed 30% to the increase in mean thickness. These processes caused a 1-month delay between maximum thermodynamic sea ice thickness and maximum mean ice thickness. The airborne EM measurements bridged the scales from local floe-scale measurements to Arctic-wide satellite observations and model grid cells. The spatial differences in mean sea ice thickness between the Central Observatory (<10 km) of MOSAiC and the Distributed Network (<50 km) were negligible in fall and only 0.2 m in late winter, but the relative abundance of thin and thick ice varied. One unexpected outcome was the large dynamic thickening in a regime where divergence prevailed on average in the western Nansen Basin in spring. We suggest that the large dynamic thickening was due to the mobile, unconsolidated sea ice pack and periodic, sub-daily motion. We demonstrate that this Lagrangian sea ice thickness data set is well suited for validating the existing redistribution theory in sea ice models. Our comprehensive description of seasonal changes of the sea ice thickness distribution is valuable for interpreting MOSAiC time series across disciplines and can be used as a reference to advance sea ice thickness modeling. 
    more » « less
  3. This study focuses on improving the preparation of spectral data for machine learning. It does so by conducting a case study that involves matching an airborne gamma-ray spectral survey of the San Francisco Bay area to geological classifications provided by the United States Geological Survey (Graymer et al., 2006).Our investigation has revealed three key approaches for enhancing accuracy in this task:1) eliminating extraneous data segments unrelated to the main task,2) augmenting minority classes to improve class balances,and 3) merging inconsistent classes.By incorporating these methods, we were able to achieve a significant increase in classification accuracy. Specifically, we increased the accuracy from an initial 40.8% to approximately 72.7%. We plan to continue our work to further enhance performance, with the goal of extending the applicability of these methods to other data types and tasks. One potential future application is the detection of rare earth elements from aerial surveys. 
    more » « less
  4. Abstract. Since the 1960s, a deep groundwater system in Wright Valley, Antarctica, has been the hypothesized source of brines to hypersaline Don Juan Pond and Lake Vanda, both of which are rich in calcium and chloride. Modeling studies do not support other possible mechanisms, such as evaporative processes, that could have led to the current suite of ions present in both waterbodies. In 2011 and 2018, an airborne electromagnetic survey was flown over Wright Valley to map subsurface resistivity (down to 600 m) in exploration of liquid water. The surveys revealed widespread unfrozen brine in the subsurface near Lake Vanda, Don Juan Pond, and the North Fork of Wright Valley. While our geophysical survey can neither confirm nor deny deep groundwater connectivity between Lake Vanda and Don Juan Pond, it does point to the potential for deep valley-wide brine, likely within the Ferrar Dolerite formation. 
    more » « less
  5. Abstract The permafrost–fire–climate system has been a hotspot in research for decades under a warming climate scenario. Surface vegetation plays a dominant role in protecting permafrost from summer warmth, thus, any alteration of vegetation structure, particularly following severe wildfires, can cause dramatic top–down thaw. A challenge in understanding this is to quantify fire-induced thaw settlement at large scales (>1000 km 2 ). In this study, we explored the potential of using Landsat products for a large-scale estimation of fire-induced thaw settlement across a well-studied area representative of ice-rich lowland permafrost in interior Alaska. Six large fires have affected ∼1250 km 2 of the area since 2000. We first identified the linkage of fires, burn severity, and land cover response, and then developed an object-based machine learning ensemble approach to estimate fire-induced thaw settlement by relating airborne repeat lidar data to Landsat products. The model delineated thaw settlement patterns across the six fire scars and explained ∼65% of the variance in lidar-detected elevation change. Our results indicate a combined application of airborne repeat lidar and Landsat products is a valuable tool for large scale quantification of fire-induced thaw settlement. 
    more » « less