skip to main content

Title: A million binaries from Gaia eDR3: sample selection and validation of Gaia parallax uncertainties
ABSTRACT We construct from Gaia eDR3 an extensive catalogue of spatially resolved binary stars within ≈1 kpc of the Sun, with projected separations ranging from a few au to 1 pc. We estimate the probability that each pair is a chance alignment empirically, using the Gaia catalogue itself to calculate the rate of chance alignments as a function of observables. The catalogue contains 1.3 (1.1) million binaries with >90 per cent (>99 per cent) probability of being bound, including 16 000 white dwarf – main-sequence (WD + MS) binaries and 1400 WD + WD binaries. We make the full catalogue publicly available, as well as the queries and code to produce it. We then use this sample to calibrate the published Gaia DR3 parallax uncertainties, making use of the binary components’ near-identical parallaxes. We show that these uncertainties are generally reliable for faint stars (G ≳ 18), but are underestimated significantly for brighter stars. The underestimates are generally $\leq30{{\ \rm per\ cent}}$ for isolated sources with well-behaved astrometry, but are larger (up to ∼80 per cent) for apparently well-behaved sources with a companion within ≲4 arcsec, and much larger for sources with poor astrometric fits. We provide an empirical fitting function to inflate published σϖ values for isolated sources. The public more » catalogue offers wide ranging follow-up opportunities: from calibrating spectroscopic surveys, to precisely constraining ages of field stars, to the masses and the initial–final mass relation of WDs, to dynamically probing the Galactic tidal field. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
2269 to 2295
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a search for close, unresolved companions in a subset of spatially resolved Gaia wide binaries containing main-sequence stars within 200 pc of the Sun, utilizing the APOGEE–Gaia Wide Binary Catalog. A catalog of 37 wide binaries was created by selecting pairs of stars with nearly identical Gaia positions, parallaxes, and proper motions, and then confirming candidates to be gravitationally-bound pairs using APOGEE radial velocities. We identify close, unresolved stellar and substellar candidate companions in these multiple systems using (1) the Gaia binary main-sequence and (2) observed periodic radial velocity variations in APOGEE measurements due to the influence of a close substellar-mass companion. The studied wide binary pairs reveal a total of four stellar-mass close companions in four different wide binaries, and four substellar-mass close companion candidates in two wide binaries. The latter are therefore quadruple systems, with one substellar mass companion orbiting each wide binary component in an S-type orbit. Taken at face value, these candidate systems represent an enhancement of an order of magnitude over the expected occurrence rate of ∼2 per cent of stars having substellar companions >2 MJup within ∼100 day orbits; we discuss implications and possible explanations for this result. Finally, we compare chemical differences between the componentsmore »of the wide binaries and the components of the candidate higher-order systems and find that any chemical influence or correlation due to the presence of close companions to wide binary stars is not discernible.« less

    We use Gaia EDR3 data to identify stars associated with six classical dwarf spheroidals (dSphs) (Draco, Ursa Minor, Sextans, Sculptor, Fornax, Carina) at their outermost radii, beyond their nominal King stellar limiting radius. For all of the dSphs examined, we find radial velocity matches with stars residing beyond the King limiting radius and with ${\gt}50{{\ \rm per\ cent}}$ astrometric probability (four in Draco, two in Ursa Minor, eight in Sextans, two in Sculptor, 12 in Fornax, and five in Carina), indicating that these stars are associated with their respective dSphs at high probability. We compare the positions of our candidate ‘extra-tidal’ stars with the orbital tracks of the galaxies, and identify stars, both with and without radial velocity matches, that are consistent with lying along the orbital track of the satellites. However, given the small number of candidate stars, we cannot make any conclusive statements about the significance of these spatially correlated stars. Cross matching with publicly available catalogues of RR Lyrae, we find one RR Lyrae candidate with ${\gt}50{{\ \rm per\ cent}}$ astrometric probability outside the limiting radius in each of Sculptor and Fornax, two such candidates in Draco, nine in Ursa Minor, seven in Sextans, and zeromore »in Carina. Follow-up spectra on all of our candidates, including possible metallicity information, will help confirm association with their respective dSphs, and could represent evidence for extended stellar haloes or tidal debris around these classical dSphs.

    « less
  3. Abstract

    White dwarf (WD) stars evolve simply and predictably, making them reliable age indicators. However, self-consistent validation of the methods for determining WD total ages has yet to be widely performed. This work uses 1565 wide (>100 au) WD+WD binaries and 24 new triples containing at least two WDs to test the accuracy and validity of WD total age determinations. For these 1589 wide double WD binaries and triples, we derive the total age of each WD using photometric data from all-sky surveys, in conjunction with Gaia parallaxes and current hydrogen atmosphere WD models. Ignoring the initial-to-final mass relation and considering only WD cooling ages, we find that roughly 21%–36% of the more massive WDs in a system have a shorter cooling age. Since more massive WDs should be born as more massive main-sequence stars, we interpret this unphysical disagreement as evidence of prior mergers or the presence of an unresolved companion, suggesting that roughly 21%–36% of wide WD+WD binaries were once triples. Among the 423 wide WD+WD pairs that pass high-fidelity cuts, we find that 25% total age uncertainties are generally appropriate for WDs with masses >0.63Mand temperatures <12,000 K and provide suggested inflation factors for age uncertainties formore »higher-mass WDs. Overall, WDs return reliable stellar ages, but we detail cases where the total ages are least reliable, especially for WDs <0.63M.

    « less
  4. ABSTRACT We report the result of searching for globular clusters (GCs) around 55 Milky Way (MW) satellite dwarf galaxies within the distance of 450 kpc from the Galactic Centre except for the Large and Small Magellanic Clouds and the Sagittarius dwarf. For each dwarf, we analyse the stellar distribution of sources in Gaia DR2, selected by magnitude, proper motion, and source morphology. Using the kernel density estimation of stellar number counts, we identify 11 possible GC candidates. Cross-matched with existing imaging data, all 11 objects are known either GCs or galaxies and only Fornax GC 1–6 among them are associated with the targeted dwarf galaxy. Using simulated GCs, we calculate the GC detection limit $M_{\rm V}^{\rm lim}$ that spans the range from $M_{\rm V}^{\rm lim}\sim -7$ for distant dwarfs to $M_{\rm V}^{\rm lim}\sim 0$ for nearby systems. Assuming a Gaussian GC luminosity function, we compute that the completeness of the GC search is above 90 per cent for most dwarf galaxies. We construct the 90 per cent credible intervals/upper limits on the GC specific frequency SN of the MW dwarf galaxies: 12 < SN < 47 for Fornax, SN < 20 for the dwarfs with −12 < MV < −10, SNmore »< 30 for the dwarfs with −10 < MV < −7, and SN < 90 for the dwarfs with MV > −7. Based on SN, we derive the probability of galaxies hosting GCs given their luminosity, finding that the probability of galaxies fainter than MV = −9 to host GCs is lower than 0.1.« less

    We measure star-spot filling fractions for 240 stars in the Pleiades and M67 open star clusters using APOGEE high-resolution H-band spectra. For this work, we developed a modified spectroscopic pipeline which solves for star-spot filling fraction and star-spot temperature contrast. We exclude binary stars, finding that the large majority of binaries in these clusters (80 per cent) can be identified from Gaia DR3 and APOGEE criteria – important for field star applications. Our data agree well with independent activity proxies, indicating that this technique recovers real star-spot signals. In the Pleiades, filling fractions saturate at a mean level of 0.248 ± 0.005 for active stars with a decline at slower rotation; we present fitting functions as a function of Rossby number. In M67, we recover low mean filling fractions of 0.030 ± 0.008 and 0.003 ± 0.002 for main sequence GK stars and evolved red giants, respectively, confirming that the technique does not produce spurious spot signals in inactive stars. Star-spots also modify the derived spectroscopic effective temperatures and convective overturn time-scales. Effective temperatures for active stars are offset from inactive ones by −109 ± 11 K, in agreement with the Pecaut & Mamajek empirical scale. Star-spot filling fractions at the level measured in active stars changes their inferred overturn time-scale,more »which biases the derived threshold for saturation. Finally, we identify a population of stars statistically discrepant from mean activity–Rossby relations and present evidence that these are genuine departures from a Rossby scaling. Our technique is applicable to the full APOGEE catalogue, with broad applications to stellar, galactic, and exoplanetary astrophysics.

    « less