skip to main content


Title: Engaging Youth Environmental Alliance in Higher Education to Achieve the Sustainable Development Goals
The authors present a new approach to show how interdisciplinary collaborations among a group of institutions can provide a unique opportunity for students to engage across the science-policy nexus using the framework of the Sustainable Development Goals and the United Nations Framework Convention on Climate Change. Through collaboration across seven higher education institutions in the United States and Australia, virtual student research teams worked together across disciplines such as economics, ecology, and other earth and social sciences to address research questions centered on sustainable development goals. The teams presented their findings in person to diplomats and delegates at the 2019 United Nations Conference of the Parties meeting in Madrid, which also had strong qualitative impacts on their perceptions of international science-policy interfaces.  more » « less
Award ID(s):
1935902
NSF-PAR ID:
10293208
Author(s) / Creator(s):
Date Published:
Journal Name:
Scholarship and practice of undergraduate research
Volume:
5
Issue:
1
ISSN:
2476-101X
Page Range / eLocation ID:
1-12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The authors present a new approach to show how interdisciplinary collaborations among a group of institutions can provide a unique opportunity for students to engage across the science-policy nexus using the framework of the Sustainable Development Goals and the United Nations Framework Convention on Climate Change. Through collaboration across seven higher education institutions in the United States and Australia, virtual student research teams worked together across disciplines. 
    more » « less
  2. ABSTRACT

    Sustainability science seeks to understand human–nature interactions behind sustainability challenges, but has largely been place-based. Traditional sustainability efforts often solved problems in one place at the cost of other places, compromising global sustainability. The metacoupling framework offers a conceptual foundation and a holistic approach to integrating human–nature interactions within a place, as well as between adjacent places and between distant places worldwide. Its applications show broad utilities for advancing sustainability science with profound implications for global sustainable development. They have revealed effects of metacoupling on the performance, synergies, and trade-offs of United Nations Sustainable Development Goals (SDGs) across borders and across local to global scales; untangled complex interactions; identified new network attributes; unveiled spatio-temporal dynamics and effects of metacoupling; uncovered invisible feedbacks across metacoupled systems; expanded the nexus approach; detected and integrated hidden phenomena and overlooked issues; re-examined theories such as Tobler's First Law of Geography; and unfolded transformations among noncoupling, coupling, decoupling, and recoupling. Results from the applications are also helpful to achieve SDGs across space, amplify benefits of ecosystem restoration across boundaries and across scales, augment transboundary management, broaden spatial planning, boost supply chains, empower small agents in the large world, and shift from place-based to flow-based governance. Key topics for future research include cascading effects of an event in one place on other places both nearby and far away. Operationalizing the framework can benefit from further tracing flows across scales and space, uplifting the rigor of causal attribution, enlarging toolboxes, and elevating financial and human resources. Unleashing the full potential of the framework will generate more important scientific discoveries and more effective solutions for global justice and sustainable development.

     
    more » « less
  3. Opportunities to participate in international engagement experiences broaden students’ perspectives and perceptions of real world problems. A strong sense of “global engineering identity” can emerge when students are part of international teams that consider solutions to humanitarian challenges. To encourage retention in engineering among undergraduate and graduate students from underrepresented groups, a multi-campus team of faculty and administrators developed a plan expose students to humanitarian engineering perspectives within global contexts. Through a federally-funded program, the leaders took students to international conferences that fostered global team-based approaches to the National Academy of Engineering’s (NAE) 14 Grand Challenges, and the United Nations’ 17 Sustainable Development Goals (SDGs). Students attended international conferences on three continents in 2016 and 2017. The conferences introduced students to the NAE’s Grand Challenges in plenary sessions, and the SDGs in smaller group sessions, with a charge to transform the world. Students from across the globe developed action plans to potentially address problems within their communities. Students were encouraged to consider real-life scenarios of their choice that could be further refined and potentially implemented upon return to their home countries. The structure of the small group sessions allowed students to be members of an international team, agree upon a problem to tackle, conduct early research, and propose a concrete path toward addressing one of the SDGs. Data for this project was collected through crowd-sourcing, using online student reflections. Students blogged throughout a one-week period for each of three conferences. There were 28 respondents, across the three events. Content analysis was used to disaggregate data and group similarities. Data showed that the students from the federally-funded delegation demonstrated a clear need to assist the global community. They were particularly interested in working on problems related to industry innovation, infrastructure, gender equality, sustainable cities, and communities. Students realized that approaches to solutions could not be centralized to their own country, and that their proposals had to be feasible and logical for other parts of the world. As an example, challenges with bringing clean water to remote regions and approaches to sanitation required a need to take time to learn from peers from other countries. Students were asked to provide ubiquitous solutions to the problems. They were asked to consider themselves as part of the respective communities as a means of assessing the practicality of potential approaches. Students’ perspectives changed throughout the course of the conference, as they reflected on their ability to bring global contexts to their research. After participating in these conferences, students experienced a greater awareness of sustainability. They were also inspired to experience different cultures, cultivating greater appreciation for the need to engage with the international community when sharing research. The exposure to humanitarian engineering perspectives influenced global STEM identity, while appreciating disciplines outside of engineering, e.g, psychology, social behaviors. Further, students learned that strides can be made toward solving global problems when collaborations and relationships are formed and fostered. 
    more » « less
  4. The purpose of the Research in the Formation of Engineers National Science Foundation funded project, Developing Engineering Experiences and Pathways in Engineering Technology Career Formation (D.E.E.P. Engineering Technology Career Formation), is to develop a greater understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists (ET) who are prepared at two-year colleges. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. Little research on career development and the role of ET in the workforce has previously been conducted prompting national organizations such as NSF and the National Academy of Sciences to prompt more research in this area [1]. The primary objectives of this project are to: (a) identify dimensions of career orientations and anchors at various stages of professional preparation and map to ET career pathways, (b) develop an empirical framework, incorporating individual career anchors and effect of institutional culture, for understanding ET professional formation, and (c) develop and pilot interventions aimed at transforming engineering formation systems in ET contexts. The three interdisciplinary theoretical frameworks integrated to guide design and analysis of this research study are social cognitive career theory (SCCT) [2], Schein’s career anchors which focuses on individual career orientation [3], and the Hughes value framework focused on the organization [4]. SCCT which links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes ties the individual career anchors to the institutional context of the Hughes framework [2]. To date, the project has collected and analyzed quantitative data from over 330 participants who are two-year college ET students, two-year college transfer students, and early career ET professionals. Qualitative data from historical institutional documents has also been collected and analyzed. Initial analyses have revealed gaps and needed areas of support for ET students in the area of professional formation. Thus far, the identified gaps are in institutional policy (i.e. lack of articulation agreements), needed faculty professional development (i.e. two-year faculty on specific career development and professional ET formation needs and four-year faculty on unique needs of transfer students), missing curriculum and resources supporting career development and professional formation of ET students, and integration of transfer student services focusing on connecting faculty and advisors across both institutional levels and types of programs. Significant gaps in the research promoting understanding of the role of ET and unique professional formation needs of these students were also confirmed. This project has been successful at helping to broaden participation in ET engineering education through integrating new participants into activities (new four-year institutional stakeholders, new industry partners, new faculty and staff directly and indirectly working with ET students) and through promoting disciplinary (engineering education and ET) and cross disciplinary collaborations (human resource development, higher education leadership, and student affairs). With one year remaining before completion of this project, this project has promoted a better understanding of student and faculty barriers supporting career development for ET students and identified need for career development resources and curriculum in ET. Words: 498 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [3] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [4] Hughes, C. (2014, Spring). Conceptualizing the five values of people and technology development: Implications for human resource managmeent and development. Workforce Education Forum, 37(1), 23-44. 
    more » « less
  5. Blasiak, Robert (Ed.)
    Abstract Marine Life 2030 is a programme endorsed by the United Nations Decade of Ocean Science for Sustainable Development (the Ocean Decade) to establish a globally coordinated system that delivers knowledge of ocean life to those who need it, promoting human well-being, sustainable development, and ocean conservation. It is an open network to unite existing and new programmes into a co-designed, global framework to share information on methods, standards, observations, and applications. Goals include realizing interoperable information and transforming the observation and forecasting of marine life for the benefit of all people. Co-design, sharing local capacity, and coordination between users of ocean resources across regions is fundamental to enable sustainable use and conservation. A novel, bottom-up networking structure is now engaging members of the ocean community to address local issues, with Marine Life 2030 facilitating the linkage between groups across different regions to meet the challenges of the Ocean Decade. A variety of metrics, including those proposed by the Group on Earth Observations, will be used to track the success of the co-design process. 
    more » « less