skip to main content


Title: Leveraging the metacoupling framework for sustainability science and global sustainable development
ABSTRACT

Sustainability science seeks to understand human–nature interactions behind sustainability challenges, but has largely been place-based. Traditional sustainability efforts often solved problems in one place at the cost of other places, compromising global sustainability. The metacoupling framework offers a conceptual foundation and a holistic approach to integrating human–nature interactions within a place, as well as between adjacent places and between distant places worldwide. Its applications show broad utilities for advancing sustainability science with profound implications for global sustainable development. They have revealed effects of metacoupling on the performance, synergies, and trade-offs of United Nations Sustainable Development Goals (SDGs) across borders and across local to global scales; untangled complex interactions; identified new network attributes; unveiled spatio-temporal dynamics and effects of metacoupling; uncovered invisible feedbacks across metacoupled systems; expanded the nexus approach; detected and integrated hidden phenomena and overlooked issues; re-examined theories such as Tobler's First Law of Geography; and unfolded transformations among noncoupling, coupling, decoupling, and recoupling. Results from the applications are also helpful to achieve SDGs across space, amplify benefits of ecosystem restoration across boundaries and across scales, augment transboundary management, broaden spatial planning, boost supply chains, empower small agents in the large world, and shift from place-based to flow-based governance. Key topics for future research include cascading effects of an event in one place on other places both nearby and far away. Operationalizing the framework can benefit from further tracing flows across scales and space, uplifting the rigor of causal attribution, enlarging toolboxes, and elevating financial and human resources. Unleashing the full potential of the framework will generate more important scientific discoveries and more effective solutions for global justice and sustainable development.

 
more » « less
Award ID(s):
2033507 2118329 1924111
PAR ID:
10421189
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
National Science Review
Volume:
10
Issue:
7
ISSN:
2095-5138
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Human–environment interactions within and across borders are now more influential than ever, posing unprecedented sustainability challenges. The framework of metacoupling (interactions within and across adjacent and distant coupled human–environment systems) provides a useful tool to evaluate them at diverse temporal and spatial scales. While most metacoupling studies have so far addressed the impacts of distant interactions (telecouplings), few have addressed the complementary and interdependent effects of the interactions within coupled systems (intracouplings) and between adjacent systems (pericouplings). Using the production and trade of a major commodity (soybean) as a demonstration, this paper empirically evaluates the complex effects on deforestation and economic growth across a globally important soybean producing region (Mato Grosso in Brazil). Although this region is influenced by a strong telecoupling process (i.e., soybean trade with national and international markets), intracouplings pose significant effects on deforestation and economic growth within focal municipalities. Furthermore, it generates pericoupling effects (e.g., deforestation) on adjacent municipalities, which precede economic benefits on adjacent systems, and may occur during and after the soybean production takes place. These results show that while economic benefits of the production of agricultural commodities for global markets tend to be localized, their environmental costs tend to be spatially widespread. As deforestation also occurred in adjacent areas beyond focal areas with economic development, this study has significant implications for sustainability in an increasingly metacoupled world.

     
    more » « less
  2. Synergies and trade-offs among the United Nations Sustainable Development Goals (SDGs) have been hotly debated. Although the world is increasingly metacoupled (socioeconomic-environmental interactions within and across adjacent or distant systems), there is little understanding of the impacts of globally widespread and important flows on enhancing or compromising sustainability in different systems. Here, we used a new integrated framework to guide SDG synergy and trade-off analysis within and across systems, as influenced by cross-boundary tourism and wildlife translocations. The world’s terrestrial protected areas alone receive approximately 8 billion visits per year, generating a direct economic impact of US $600 billion. Globally, more than 5000 animal species and 29,000 plant species are traded across country borders, and the wildlife trade has arguably contributed to zoonotic disease worldwide, such as the ongoing COVID-19 pandemic. We synthesized 22 cases of tourism and wildlife translocations across six continents and found 33 synergies and 14 trade-offs among 10 SDGs within focal systems and across spillover systems. Our study provides an empirical demonstration of SDG interactions across spillover systems and insights for holistic sustainability governance, contributing to fostering synergies and reducing trade-offs to achieve global sustainable development in the metacoupled Anthropocene. 
    more » « less
  3. Abstract

    Meeting the United Nation’ Sustainable Development Goals (SDGs) calls for an integrative scientific approach, combining expertise, data, models and tools across many disciplines towards addressing sustainability challenges at various spatial and temporal scales. This holistic approach, while necessary, exacerbates the big data and computational challenges already faced by researchers. Many challenges in sustainability research can be tackled by harnessing the power of advanced cyberinfrastructure (CI). The objective of this paper is to highlight the key components and technologies of CI necessary for meeting the data and computational needs of the SDG research community. An overview of the CI ecosystem in the United States is provided with a specific focus on the investments made by academic institutions, government agencies and industry at national, regional, and local levels. Despite these investments, this paper identifies barriers to the adoption of CI in sustainability research that include, but are not limited to access to support structures; recruitment, retention and nurturing of an agile workforce; and lack of local infrastructure. Relevant CI components such as data, software, computational resources, and human-centered advances are discussed to explore how to resolve the barriers. The paper highlights multiple challenges in pursuing SDGs based on the outcomes of several expert meetings. These include multi-scale integration of data and domain-specific models, availability and usability of data, uncertainty quantification, mismatch between spatiotemporal scales at which decisions are made and the information generated from scientific analysis, and scientific reproducibility. We discuss ongoing and future research for bridging CI and SDGs to address these challenges.

     
    more » « less
  4. This Perspective evaluates recent progress in modeling nature–society systems to inform sustainable development. We argue that recent work has begun to address longstanding and often-cited challenges in bringing modeling to bear on problems of sustainable development. For each of four stages of modeling practice—defining purpose, selecting components, analyzing interactions, and assessing interventions—we highlight examples of dynamical modeling methods and advances in their application that have improved understanding and begun to inform action. Because many of these methods and associated advances have focused on particular sectors and places, their potential to inform key open questions in the field of sustainability science is often underappreciated. We discuss how application of such methods helps researchers interested in harnessing insights into specific sectors and locations to address human well-being, focus on sustainability-relevant timescales, and attend to power differentials among actors. In parallel, application of these modeling methods is helping to advance theory of nature–society systems by enhancing the uptake and utility of frameworks, clarifying key concepts through more rigorous definitions, and informing development of archetypes that can assist hypothesis development and testing. We conclude by suggesting ways to further leverage emerging modeling methods in the context of sustainability science.

     
    more » « less
  5. Abstract

    Domestic attempts to advance the Sustainable Development Goals (SDGs) in a country can have synergistic and/or trade-off effects on the advancement of SDGs in other countries. Transboundary SDG interactions can be delivered through various transmission channels (e.g., trade, river flow, ocean currents, and air flow). This study quantified the transboundary interactions through these channels between 768 pairs of SDG indicators. The results showed that although high income countries only comprised 14.18% of the global population, they contributed considerably to total SDG interactions worldwide (60.60%). Transboundary synergistic effects via international trade were 14.94% more pronounced with trade partners outside their immediate geographic vicinity than with neighbouring ones. Conversely, nature-caused flows (including river flow, ocean currents, and air flow) resulted in 39.29% stronger transboundary synergistic effects among neighboring countries compared to non-neighboring ones. To facilitate the achievement of SDGs worldwide, it is essential to enhance collaboration among countries and leverage transboundary synergies.

     
    more » « less