skip to main content


Title: Manipulation of the Tyrosinase gene permits improved CRISPR/Cas editing and neural imaging in cichlid fish
Abstract Direct tests of gene function have historically been performed in a limited number of model organisms. The CRISPR/Cas system is species-agnostic, offering the ability to manipulate genes in a range of models, enabling insights into evolution, development, and physiology. Astatotilapia burtoni , a cichlid fish from the rivers and shoreline around Lake Tanganyika, has been extensively studied in the laboratory to understand evolution and the neural control of behavior. Here we develop protocols for the creation of CRISPR-edited cichlids and create a broadly useful mutant line. By manipulating the Tyrosinase gene, which is necessary for eumelanin pigment production, we describe a fast and reliable approach to quantify and optimize gene editing efficiency. Tyrosinase mutants also remove a major obstruction to imaging, enabling visualization of subdermal structures and fluorophores in situ. These protocols will facilitate broad application of CRISPR/Cas9 to studies of cichlids as well as other non-traditional model aquatic species.  more » « less
Award ID(s):
1825723
NSF-PAR ID:
10293221
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the last decade, the CRISPR/Cas9 bacterial virus defense system has been adapted as a user-friendly, efficient, and precise method for targeted mutagenesis in eukaryotes. Though CRISPR/Cas9 has proven effective in a diverse range of organisms, it is still most often used to create mutant lines in lab-reared genetic model systems. However, one major advantage of CRISPR/Cas9 mutagenesis over previous gene targeting approaches is that its high efficiency allows the immediate generation of near-null mosaic mutants. This feature could potentially allow genotype to be linked to phenotype in organisms with life histories that preclude the establishment of purebred genetic lines; a group that includes the vast majority of vertebrate species. Of particular interest to scholars of early vertebrate evolution are several long-lived and slow-maturing fishes that diverged from two dominant modern lineages, teleosts and tetrapods, in the Ordovician, or before. These early-diverging or “basal” vertebrates include the jawless cyclostomes, cartilaginous fishes, and various non-teleost ray-finned fishes. In addition to occupying critical phylogenetic positions, these groups possess combinations of derived and ancestral features not seen in conventional model vertebrates, and thus provide an opportunity for understanding the genetic bases of such traits. Here we report successful use of CRISPR/Cas9 mutagenesis in one such non-teleost fish, sterlet Acipenser ruthenus , a small species of sturgeon. We introduced mutations into the genes Tyrosinase , which is needed for melanin production, and Sonic hedgehog , a pleiotropic developmental regulator with diverse roles in early embryonic patterning and organogenesis. We observed disruption of both loci and the production of consistent phenotypes, including both near-null mutants’ various hypomorphs. Based on these results, and previous work in lamprey and amphibians, we discuss how CRISPR/Cas9 F0 mutagenesis may be successfully adapted to other long-lived, slow-maturing aquatic vertebrates and identify the ease of obtaining and injecting eggs and/or zygotes as the main challenges. 
    more » « less
  2. Summary

    Eliminating or silencing a gene's level of activity is one of the classic approaches developmental biologists employ to determine a gene's function. A recently developed method of gene perturbation called CRISPR‐Cas, which was derived from a prokaryotic adaptive immune system, has been adapted for use in eukaryotic cells. This technology has been established in several model organisms as a powerful and efficient tool for knocking out or knocking down the function of a gene of interest. It has been recently shown that CRISPR‐Cas functions with fidelity and efficiency inCiona robusta. Here, we show that inC. robustaCRISPR‐Cas mediated genomic knock‐ins can be efficiently generated. Electroporating a tissue‐specific transgene driving Cas9 and a U6‐driven gRNA transgene together with a fluorescent protein‐containing homology directed repair (FP‐HDR) template results in gene‐specific patterns of fluorescence consistent with a targeted genomic insertion. Using the Tyrosinase locus to optimize reagents, we first characterize a new Pol III promoter for expressing gRNAs from theCionasavignyiH1 gene, and then adapt technology that flanks gRNAs by ribozymes allowing cell‐specific expression from Pol II promoters. Next, we examine homology arm‐length efficiencies of FP‐HDR templates. Reagents were then developed for targeting Brachyury and Pou4 that resulted in expected patterns of fluorescence, and sequenced PCR amplicons derived from single embryos validated predicted genomic insertions. Finally, using two differentially colored FP‐HDR templates, we show that biallelic FP‐HDR template insertion can be detected in live embryos of the F0 generation.

     
    more » « less
  3. Abstract

    Kryptolebias marmoratus(Kmar), a teleost fish of the order Cyprinodontiformes, has a suite of unique phenotypes and behaviors not observed in other fishes. Many of these phenotypes are discrete and highly plastic—varying over time within an individual, and in some cases reversible. Kmar and its interfertile sister species,K. hermaphroditus, are the only known self‐fertile vertebrates. This unusual sexual mode has the potential to provide unique insights into the regulation of vertebrate sexual development, and also lends itself to genetics. Kmar is easily adapted to the lab and requires little maintenance. However, its internal fertilization and small clutch size limits its experimental use. To support Kmar as a genetic model, we compared alternative husbandry techniques to maximize recovery of early cleavage‐stage embryos. We find that frequent egg collection enhances yield, and that protease treatment promotes the greatest hatching success. We completed a forward mutagenesis screen and recovered several mutant lines that serve as important tools for genetics in this model. Several will serve as useful viable recessive markers for marking crosses. Importantly, the mutantkissylipslays embryos at twice the rate of wild‐type. Combining frequent egg collection with thekissylipsmutant background allows for a substantial enhancement of early embryo yield. These improvements were sufficient to allow experimental analysis of early development and the successful mono‐ and bi‐allelic targeted knockout of an endogenoustyrosinasegene with CRISPR/Cas9 nucleases. Collectively, these tools will facilitate modern developmental genetics in this fascinating fish, leading to future insights into the regulation of plasticity.

     
    more » « less
  4. Abstract

    Adaptive radiations are often characterized by the rapid evolution of traits associated with divergent feeding modes. For example, the evolutionary history of African cichlids is marked by repeated and coordinated shifts in skull, trophic, fin and body shape. Here, we seek to explore the molecular basis for fin shape variation in Lake Malawi cichlids. We first described variation within an F2mapping population derived by crossing two cichlid species with divergent morphologies including fin shape. We then used this population to genetically map loci that influence variation in this trait. We found that the genotype–phenotype map for fin shape is largely distinct from other morphological characters including body and craniofacial shape. These data suggest that key aspects of fin, body and jaw shape are genetically modular and that the coordinated evolution of these traits in cichlids is more likely due to common selective pressures than to pleiotropy or linkage. We next combined genetic mapping data with population‐level genome scans to identifywnt7aaandcol1a1as candidate genes underlying variation in the number of pectoral fin ray elements. Gene expression patterns across species with different fin morphologies and small molecule manipulation of the Wnt pathway during fin development further support the hypothesis that variation at these loci underlies divergence in fin shape between cichlid species. In all, our data provide additional insights into the genetic and molecular mechanisms associated with morphological divergence in this important adaptive radiation.

     
    more » « less
  5. null (Ed.)
    Abstract Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26 . We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3 , in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species. 
    more » « less