skip to main content

Title: Phenological displacement is uncommon among sympatric angiosperms
Interactions between species can influence access to resources and successful reproduction. One possible outcome of such interactions is reproductive character displacement. Here, the similarity of reproductive traits – such as flowering time – among close relatives growing in sympatry differ more so than when growing apart. However, evidence for the overall prevalence and direction of this phenomenon, or the stability of such differences under environmental change, remains untested across large taxonomic and spatial scales. We apply data from tens of thousands of herbarium specimens to examine character displacement in flowering time across 110 animal-pollinated angiosperm species in the eastern USA. We demonstrate that the degree and direction of phenological displacement among co-occurring closely related species pairs varies tremendously. Overall, flowering time displacement in sympatry is not common. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. We additionally identify that future climate change may alter the nature of phenological displacement among many of these species pairs. On average, flowering times of closely related species were predicted to shift further apart by the mid-21st century, which may have significant future consequences for species interactions and gene flow.Competing Interest StatementThe authors have declared no competing more » interest. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Reproductive character displacement has long been hypothesized to be a key determinant of speciation and co-existence in flowering plants. A central tenet of this hypothesis is that reproductive traits of close relatives growing in sympatry diverge more than they do where close relatives do not grow together. However, this idea remains untested across taxa and at large spatial scales. Here, we use data collected from tens of thousands of herbarium specimens to examine evidence for character displacement in flowering time for 91 closely-related pairs of animal-pollinated angiosperm species in the eastern USA. We see no evidence for overall phenological divergence in sympatry across regions, clades, or life histories. Rather our results indicate widespread convergence of flowering times in sympatry for species pairs that generally tend to flower close in time. We also find that climate change could alter the nature of these convergent flowering events by shifting them further apart in a majority species pair comparisons. Specifically, congeneric species in New England and the Atlantic Coastal Plain are projected to flower 2–4 days further apart, on average, by the mid-21st century as warming temperatures drive species-specific phenological shifts within genera. This may have significant consequences for species interactions andMore>>
  2. Climate change has resulted in increased temperature means across the globe. Many angiosperms flower earlier in response to rising temperature and the phenologies of these species are reasonably well predicted by models that account for spring (early growing season) and winter temperatures. Surprisingly, however, exceptions to the general pattern of precocious flowering are common. Many species either do not appear to respond or even delay flowering in, or following, warm growing seasons. Existing phenological models have not fully addressed such exceptions to the common association of advancing phenologies with warming temperatures. The phenological events that are typically recorded (e.g., onset of flowering) are but one phase in a complex developmental process that often begins one or more years previously, and flowering time may be strongly influenced by temperature over the entire multi-year course of flower development. We propose a series of models that explore effects of growing-season temperature increase on the multiple processes of flower development and how changes in development may impact the timing of anthesis. We focus on temperate forest trees, which are characterized by preformation, the initiation of flower primordia one or more years prior to anthesis. We then synthesize the literature on flower development to evaluatemore »the models. Although fragmentary, the existing data suggest the potential for temperature to affect all aspects of flower development in woody perennials. But, even for relatively well studied taxa, the critical developmental responses that underlie phenological patterns are difficult to identify. Our proposed models explain the seemingly counter-intuitive observations that warmer growingseason temperatures delay flowering in many species. Future research might concentrate on taxa that do not appear to respond to temperature, or delay flowering in response to warm temperatures, to understand what processes contribute to this pattern.« less
  3. The rapid evolution of sexual isolation in sympatry has long been associated with reinforcement (i.e., selection to avoid maladaptive hybridization). However, there are many species pairs in sympatry that have evolved rapid sexual isolation without known costs to hybridization. A major unresolved question is what evolutionary processes are involved in driving rapid speciation in such cases. Here, we focus on one such system; the Drosophila athabasca species complex, which is composed of three partially sympatric and interfertile semispecies: WN, EA, and EB. To study speciation in this species complex, we assayed sexual and genomic isolation within and between these semispecies in both sympatric and allopatric populations. First, we found no evidence of reproductive character displacement (RCD) in sympatric zones compared to distant allopatry. Instead, semispecies were virtually completely sexually isolated from each other across their entire ranges. Moreover, using spatial approaches and coalescent demographic simulations, we detected either zero or only weak heterospecific gene flow in sympatry. In contrast, within each semispecies we found only random mating and little population genetic structure, except between highly geographically distant populations. Finally, we determined that speciation in this system is at least an order of magnitude older than previously assumed, with WN divergingmore »first, around 200K years ago, and EA and EB diverging 100K years ago. In total, these results suggest that these semispecies should be given full species status and we adopt new nomenclature: WN—D. athabasca, EA—D. mahican, and EB—D. lenape. While the lack of RCD in sympatry and interfertility do not support reinforcement, we discuss what additional evidence is needed to further decipher the mechanisms that caused rapid speciation in this species complex.« less
  4. Abstract Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.
  5. Abstract
    Phenology is a key biological trait of an organism’s success and is one of the best indicators of its response to recent climate change. Plants are among the most well-studied organisms in this regard, but observational data bearing on this topic are largely restricted to woody species of the northern hemisphere, mostly from ca. the last three decades. Recent research has demonstrated that mobilized online herbarium specimens provide important, albeit mostly neglected, information on plant phenology. Here, we use the web tool CrowdCurio to crowdsource phenological data from more than 10,000 herbarium specimens representing 30 flowering plant species broadly distributed across the eastern United States. Our results, spanning 120 years and generated from over 2,000 crowdsourcers, clarify numerous aspects of plant phenology. First, they reveal that plant reproductive phenology is significantly advancing in response to warming, which is consistent with previous studies. Second, among those species with broad latitudinal ranges, populations from more southern latitudes are significantly more phenologically sensitive to temperature than those from northern populations. Last, contrary to some recent findings, plants in warmer, less variable climates may be much more dynamic, on average, in their phenological sensitivity. Our results are robust to a variety of confoundingMore>>