skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Canonical Stratifications Along Bisheaves
A theory of bisheaves has been recently introduced to measure the homological stability of fibers of maps to manifolds. A bisheaf over a topological space is a triple consisting of a sheaf, a cosheaf, and compatible maps from the stalks of the sheaf to the stalks of the cosheaf. In this note we describe how, given a bisheaf constructible (i.e., locally constant) with respect to a triangulation of its underlying space, one can explicitly determine the coarsest stratification of that space for which the bisheaf remains constructible.  more » « less
Award ID(s):
1717159
PAR ID:
10293397
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Topological Data Analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We study the probabilistic convergence between the mapper graph and the Reeb graph of a topological space $${\mathbb {X}}$$ X equipped with a continuous function $$f: {\mathbb {X}}\rightarrow \mathbb {R}$$ f : X → R . We first give a categorification of the mapper graph and the Reeb graph by interpreting them in terms of cosheaves and stratified covers of the real line $$\mathbb {R}$$ R . We then introduce a variant of the classic mapper graph of Singh et al. (in: Eurographics symposium on point-based graphics, 2007), referred to as the enhanced mapper graph, and demonstrate that such a construction approximates the Reeb graph of $$({\mathbb {X}}, f)$$ ( X , f ) when it is applied to points randomly sampled from a probability density function concentrated on $$({\mathbb {X}}, f)$$ ( X , f ) . Our techniques are based on the interleaving distance of constructible cosheaves and topological estimation via kernel density estimates. Following Munch and Wang (In: 32nd international symposium on computational geometry, volume 51 of Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16, 2016), we first show that the mapper graph of $$({\mathbb {X}}, f)$$ ( X , f ) , a constructible $$\mathbb {R}$$ R -space (with a fixed open cover), approximates the Reeb graph of the same space. We then construct an isomorphism between the mapper of $$({\mathbb {X}},f)$$ ( X , f ) to the mapper of a super-level set of a probability density function concentrated on $$({\mathbb {X}}, f)$$ ( X , f ) . Finally, building on the approach of Bobrowski et al. (Bernoulli 23 (1):288–328, 2017b), we show that, with high probability, we can recover the mapper of the super-level set given a sufficiently large sample. Our work is the first to consider the mapper construction using the theory of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf theory, probability, and statistics, to support topological data analysis with random data. 
    more » « less
  2. Let X X be an affine spherical variety, possibly singular, and L + X \mathsf L^+X its arc space. The intersection complex of L + X \mathsf L^+X , or rather of its finite-dimensional formal models, is conjectured to be related to special values of local unramified L L -functions. Such relationships were previously established in Braverman–Finkelberg–Gaitsgory–Mirković for the affine closure of the quotient of a reductive group by the unipotent radical of a parabolic, and in Bouthier–Ngô–Sakellaridis for toric varieties and L L -monoids. In this paper, we compute this intersection complex for the large class of those spherical G G -varieties whose dual group is equal to G ˇ \check G , and the stalks of its nearby cycles on the horospherical degeneration of X X . We formulate the answer in terms of a Kashiwara crystal, which conjecturally corresponds to a finite-dimensional G ˇ \check G -representation determined by the set of B B -invariant valuations on X X . We prove the latter conjecture in many cases. Under the sheaf–function dictionary, our calculations give a formula for the Plancherel density of the IC function of L + X \mathsf L^+X as a ratio of local L L -values for a large class of spherical varieties. 
    more » « less
  3. This paper considers generalizations of certain arithmetic complexes appearing in the work of Raicu and VandeBogert in connection with the study of stable sheaf cohomology on flag varieties. Defined over the ring of integer valued polynomials, we prove an isomorphism of these complexes as conjectured by Gao, Raicu, and VandeBogert. In particular, this shows that a previously made identification between the stable sheaf cohomology of hook and two column partition Schur functors applied to the cotangent sheaf of projective space can be made to be uniform with respect to these complexes. These results are extended to the projective space defined over the integers. 
    more » « less
  4. Bott proved a strong vanishing theorem for sheaf cohomology on projective space, namely that the higher cohomology of every bundle of differential forms tensored with an ample line bundle is zero. This holds for toric varieties, but not for most other varieties. We classify the smooth Fano threefolds that satisfy Bott vanishing. There are many more than expected. 
    more » « less
  5. Abstract Maize stalk lodging is the structural failure of the stalk prior to harvest and is a major problem for maize (corn) producers and plant breeders. To address this problem, it is critical to understand precisely how geometric and material parameters of the maize stalk influence stalk strength. Computational models could be a powerful tool in such investigations, but current methods of creating computational models are costly, time-consuming and, most importantly, do not provide parameterized control of the maize stalk parameters. The purpose of this study was to develop and validate a parameterized 3D model of the maize stalk. The parameterized model provides independent control over all aspects of the maize stalk geometry and material properties. The model accurately captures the shape of actual maize stalks and is predictive of maize stalk stiffness and strength. The model was validated using stochastic sampling of material properties to account for uncertainty in the values and influence of mechanical tissue properties. Results indicated that buckling is influenced by material properties to a greater extent that flexural stiffness. Finally, we demonstrate that this model can be used to create an unlimited number of synthetic stalks from within the parameter space. This model will enable the future implementation of parameter sweep studies, sensitivity analysis and optimization studies, and can be used to create computational models of maize stalks with any desired combination of geometric and material properties. 
    more » « less