skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Avidity and surface mobility in multivalent ligand–receptor binding
Targeted drug delivery relies on two physical processes: the selective binding of a therapeutic particle to receptors on a specific cell membrane, followed by transport of the particle across the membrane. In this article, we address some of the challenges in controlling the thermodynamics and dynamics of these two processes by combining a simple experimental system with a statistical mechanical model. Specifically, we characterize and model multivalent ligand–receptor binding between colloidal particles and fluid lipid bilayers, as well as the surface mobility of membrane-bound particles. We show that the mobility of the receptors within the fluid membrane is key to both the thermodynamics and dynamics of binding. First, we find that the particle-membrane binding free energy—or avidity—is a strongly nonlinear function of the ligand–receptor affinity. We attribute the nonlinearity to a combination of multivalency and recruitment of fluid receptors to the binding site. Our results also suggest that partial wrapping of the bound particles by the membrane enhances avidity further. Second, we demonstrate that the lateral mobility of membrane-bound particles is also strongly influenced by the recruitment of receptors. Specifically, we find that the lateral diffusion coefficient of a membrane-bound particle is dominated by the hydrodynamic drag against the aggregate of receptors within the membrane. These results provide one of the first direct validations of the working theoretical framework for multivalent interactions. They also highlight that the fluidity and elasticity of the membrane are as important as the ligand–receptor affinity in determining the binding and transport of small particles attached to membranes.  more » « less
Award ID(s):
1710112
PAR ID:
10293404
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
13
Issue:
29
ISSN:
2040-3364
Page Range / eLocation ID:
12602 to 12612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The immune system exploits a wide range of strategies to combine sensitivity with selectivity for optimal response. We propose a generic physical mechanism that allows tuning the location and steepness of the response threshold of cellular processes activated by multivalent binding. The mechanism is based on the possibility to modulate the attraction between membrane receptors. We use theory and simulations to show how tuning interreceptor attraction can enhance or suppress the binding of multivalent ligand-coated particles to surfaces. The changes in the interreceptor attraction less than the thermal energykBTcan selectively switch the receptor-clustering and activation on or off in an almost step-wise fashion, which we explain by near-critical receptor density fluctuations. We also show that the same mechanism can efficiently regulate the onset of endocytosis for,e.g., drug delivery vehicles. 
    more » « less
  2. The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor. 
    more » « less
  3. G protein-coupled receptors (GPCRs) represent the largest group of membrane receptors for transmembrane signal transduction. Ligand-induced activation of GPCRs triggers G protein activation followed by various signaling cascades. Understanding the structural and energetic determinants of ligand binding to GPCRs and GPCRs to G proteins is crucial to the design of pharmacological treatments targeting specific conformations of these proteins to precisely control their signaling properties. In this study, we focused on interactions of a prototypical GPCR, beta-2 adrenergic receptor (β 2 AR), with its endogenous agonist, norepinephrine (NE), and the stimulatory G protein (G s ). Using molecular dynamics (MD) simulations, we demonstrated the stabilization of cationic NE, NE(+), binding to β 2 AR by G s protein recruitment, in line with experimental observations. We also captured the partial dissociation of the ligand from β 2 AR and the conformational interconversions of G s between closed and open conformations in the NE(+)–β 2 AR–G s ternary complex while it is still bound to the receptor. The variation of NE(+) binding poses was found to alter G s α subunit (G s α) conformational transitions. Our simulations showed that the interdomain movement and the stacking of G s α α1 and α5 helices are significant for increasing the distance between the G s α and β 2 AR, which may indicate a partial dissociation of G s α The distance increase commences when G s α is predominantly in an open state and can be triggered by the intracellular loop 3 (ICL3) of β 2 AR interacting with G s α, causing conformational changes of the α5 helix. Our results help explain molecular mechanisms of ligand and GPCR-mediated modulation of G protein activation. 
    more » « less
  4. STM can effectively probe single porphyrin receptor-ligand binding events at the solution/solid interface and provide both qualitative and quantitative information about molecule binding affinity, reaction kinetics and thermodynamics. 
    more » « less
  5. Abstract Regulation of membrane receptor mobility tunes cellular response to external signals, such as in binding of B cell receptors (BCR) to antigen, which initiates signaling. However, whether BCR signaling is regulated by BCR mobility, and what factors mediate this regulation, are not well understood. Here we use single molecule imaging to examine BCR movement during signaling activation and a novel machine learning method to classify BCR trajectories into distinct diffusive states. Inhibition of actin dynamics downstream of the actin nucleating factors, Arp2/3 and formin, decreases BCR mobility. Constitutive loss or acute inhibition of the Arp2/3 regulator, N-WASP, which is associated with enhanced signaling, increases the proportion of BCR trajectories with lower diffusivity. Furthermore, loss of N-WASP reduces the diffusivity of CD19, a stimulatory co-receptor, but not that of FcγRIIB, an inhibitory co-receptor. Our results implicate a dynamic actin network in fine-tuning receptor mobility and receptor-ligand interactions for modulating B cell signaling. 
    more » « less