skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rough isometry between Gromov hyperbolic spaces and uniformization
In this note we show that given two complete geodesic Gromov hyperbolic spaces that are roughly isometric and an arbitrary (not necessarily small), either the uniformization of both spaces with parameter epsilon results in uniform domains, or else neither uniformized space is a uniform domain. The terminology of "uniformization" is from [BHK], where it is shown that the uniformization, with parameter epsilon, of a complete geodesic Gromov hyperbolic space results in a uniform domain provided epsilon is small enough.  more » « less
Award ID(s):
1800161
PAR ID:
10293414
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annales Fennici mathematici
Volume:
46
Issue:
1
ISSN:
2737-114X
Page Range / eLocation ID:
449-464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The uniformization and hyperbolization transformations formulated by Bonk et al. in “Uniformizing Gromov Hyperbolic Spaces” , Astérisque, vol 270 (2001), dealt with geometric properties of metric spaces. In this paper we consider metric measure spaces and construct a parallel transformation of measures under the uniformization and hyperbolization procedures. We show that if a locally compact roughly starlike Gromov hyperbolic space is equipped with a measure that is uniformly locally doubling and supports a uniformly local p -Poincaré inequality, then the transformed measure is globally doubling and supports a global p -Poincaré inequality on the corresponding uniformized space. In the opposite direction, we show that such global properties on bounded locally compact uniform spaces yield similar uniformly local properties for the transformed measures on the corresponding hyperbolized spaces. We use the above results on uniformization of measures to characterize when a Gromov hyperbolic space, equipped with a uniformly locally doubling measure supporting a uniformly local p -Poincaré inequality, carries nonconstant globally defined p -harmonic functions with finite p -energy. We also study some geometric properties of Gromov hyperbolic and uniform spaces. While the Cartesian product of two Gromov hyperbolic spaces need not be Gromov hyperbolic, we construct an indirect product of such spaces that does result in a Gromov hyperbolic space. This is done by first showing that the Cartesian product of two bounded uniform domains is a uniform domain. 
    more » « less
  2. Abstract We study a generalization of the classical multidimensional scaling procedure (cMDS) which is applicable in the setting of metric measure spaces. Metric measure spaces can be seen as natural ‘continuous limits’ of finite data sets. Given a metric measure space $${\mathcal{X}} = (X,d_{X},\mu _{X})$$, the generalized cMDS procedure involves studying an operator which may have infinite rank, a possibility which leads to studying its traceability. We establish that several continuous exemplar metric measure spaces such as spheres and tori (both with their respective geodesic metrics) induce traceable cMDS operators, a fact which allows us to obtain the complete characterization of the metrics induced by their resulting cMDS embeddings. To complement this, we also exhibit a metric measure space whose associated cMDS operator is not traceable. Finally, we establish the stability of the generalized cMDS method with respect to the Gromov–Wasserstein distance. 
    more » « less
  3. We prove that any metric surface (that is, metric space homeomorphic to a 2-manifold with boundary) with locally finite Hausdorff 2-measure is the Gromov–Hausdorff limit of polyhedral surfaces with controlled geometry. We use this result, together with the classical uniformization theorem, to prove that any metric surface homeomorphic to the 2-sphere with finite Hausdorff 2-measure admits a weakly quasiconformal parametrization by the Riemann sphere, answering a question of Rajala–Wenger. These results have been previously established by the authors under the assumption that the metric surface carries a length metric. As a corollary, we obtain new proofs of the uniformization theorems of Bonk–Kleiner for quasispheres and of Rajala for reciprocal surfaces. Another corollary is a simplification of the definition of a reciprocal surface, which answers a question of Rajala concerning minimal hypotheses under which a metric surface is quasiconformally equivalent to a Euclidean domain. 
    more » « less
  4. Abstract The sphericalization procedure converts a Euclidean space into a compact sphere. In this note we propose a variant of this procedure for locally compact, rectifiably path-connected, non-complete, unbounded metric spaces by using conformal deformations that depend only on the distance to the boundary of the metric space. This deformation is locally bi-Lipschitz to the original domain near its boundary, but transforms the space into a bounded domain. We will show that if the original metric space is a uniform domain with respect to its completion, then the transformed space is also a uniform domain. 
    more » « less
  5. Abstract We show convergence of small eigenvalues for geometrically finite hyperbolicn-manifolds under strong limits. For a class of convergent convex sets in a strongly convergent sequence of Kleinian groups, we use the spectral gap of the limit manifold and the exponentially mixing property of the geodesic flow along the strongly convergent sequence to find asymptotically uniform counting formulas for the number of orthogeodesics between the convex sets. In particular, this provides asymptotically uniform counting formulas (with respect to length) for orthogeodesics between converging Margulis tubes, geodesic loops based at converging basepoints, and primitive closed geodesics. 
    more » « less