skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous precipitation for monoclonal antibody capture using countercurrent washing by microfiltration
There is renewed interest in the possibility of using precipitation for initial capture of high-value therapeutic proteins as part of an integrated continuous downstream process. Precipitation is greatly facilitated by the high product titers now achieved in most cell culture processes, in sharp contrast to chromatographic processes whose performance is reduced at high titers. The current study used a combination of reversible cross-linking (zinc chloride, ZnCl2) and volume exclusion (polyethylene glycol) agents to precipitate a monoclonal antibody product directly from harvested cell culture fluid using a continuous tubular precipitation reactor. The precipitates were then dewatered and continuously washed using tangential flow filtration, with a countercurrent-staged configuration used to reduce the amount of wash buffer required and increase host cell protein removal. Long-term operation was achieved by operating the membrane modules below the critical filtrate flux to avoid fouling. Experimental results demonstrate the feasibility of this fully continuous integrated precipitation process at bench scale, with design calculations used to explore the key factors affecting the performance of this system for initial antibody capture.  more » « less
Award ID(s):
1705558
PAR ID:
10293525
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biotechnology progress
Volume:
35
Issue:
6
ISSN:
8756-7938
Page Range / eLocation ID:
e2886
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As upstream product titers increase, the downstream chromatographic capture step has become a significant “downstream bottleneck.” Precipitation becomes more attractive under these conditions as the supersaturation driving force increases with the ever-increasing titer. In this study, two precipitating reagents with orthogonal mechanisms, polyethylene glycol (PEG) as a volume excluder and zinc chloride (ZnCl2) as a cross linker, were examined as precipitants for two monoclonal antibodies (mAbs), one stable and the other aggregation-prone, in purified drug substance and harvested cell culture fluid forms. Manual batch solubility and redissolution experiments were performed as scouting experiments. A high throughput (HTP) liquid handling system was used to investigate the design space as fully as possible while reducing time, labor, and material requirements. Precipitation and redissolution were studied by systematically varying the concentrations of PEG and ZnCl2 to identify combinations that resulted in high yield and good quality for the stable mAb; PEG concentrations in the range 7–7.5 wt/vol% together with 10 mM ZnCl2 gave a yield of 97% and monomer contents of about 93%. While yield for the unstable mAb was high, quality was not acceptable. Performance at selected conditions was further corroborated for the stable mAb using a continuous tubular precipitation reactor at the laboratory scale. The HTP automation system was a powerful tool for locating desired (customized) conditions for antibodies of different physicochemical properties. 
    more » « less
  2. NISTCHO is a recombinant Chinese hamster ovary cell line that has been genetically engineered to produce the monoclonal antibody cNISTmAb. This study investigates the stability of the NISTCHO cell line in long-term culture. Low passage number NISTCHO cells from a working cell bank were used to initiate a shake flask culture that was passaged over many weeks, accounting for approximately 129 cell doublings. Cells taken at two-week intervals during this period were used to inoculate fresh cultures, which were monitored over nine days for viable cell concentration, percent viability, and monoclonal antibody production. Results demonstrate consistency among growth curves over time with comparable peak cell densities and cell viabilities. Importantly, cNISTmAb production remained high, with culture titers remaining stable over the culture period and a high number of cell doublings. These findings demonstrate that the NISTCHO cell line has high stability and a sustained capability of producing cNISTmAb over extended culture periods. 
    more » « less
  3. Abstract As upstream product titers increase, the downstream chromatographic capture step has become a significant “downstream bottleneck.” Precipitation becomes more attractive under these conditions as the supersaturation driving force increases with the ever‐increasing titer. In this study, two precipitating reagents with orthogonal mechanisms, polyethylene glycol (PEG) as a volume excluder and zinc chloride (ZnCl2) as a cross linker, were examined as precipitants for two monoclonal antibodies (mAbs), one stable and the other aggregation‐prone, in purified drug substance and harvested cell culture fluid forms. Manual batch solubility and redissolution experiments were performed as scouting experiments. A high throughput (HTP) liquid handling system was used to investigate the design space as fully as possible while reducing time, labor, and material requirements. Precipitation and redissolution were studied by systematically varying the concentrations of PEG and ZnCl2to identify combinations that resulted in high yield and good quality for the stable mAb; PEG concentrations in the range 7–7.5 wt/vol% together with 10 mM ZnCl2gave a yield of 97% and monomer contents of about 93%. While yield for the unstable mAb was high, quality was not acceptable. Performance at selected conditions was further corroborated for the stable mAb using a continuous tubular precipitation reactor at the laboratory scale. The HTP automation system was a powerful tool for locating desired (customized) conditions for antibodies of different physicochemical properties. 
    more » « less
  4. null (Ed.)
    Precipitation can be used for the initial purification of monoclonal antibodies (mAbs), with the soluble host cell proteins removed in the permeate by tangential flow microfiltration. The objective of this study was to examine the use of a feed-and-bleed configuration to increase the effective conversion (ratio of permeate to feed flow rates) in the hollow fiber module to enable more effective washing of the precipitate. Experiments were performed using human serum Immunoglobulin G (IgG) precipitates formed with 10 mM zinc chloride and 7 wt% polyethylene glycol. The critical flux was evaluated as a function of the shear rate and IgG concentration, with the resulting correlation used to predict conditions that can achieve 90% conversion in a single pass with minimal fouling. Experimental data for both the start-up and steady-state performance are in good agreement with model calculations. These results were used to analyze the performance of an enhanced continuous precipitation–microfiltration process using the feed-and-bleed configuration for the initial capture / purification of a mAb product. 
    more » « less
  5. Abstract Precipitation can be used for the initial purification of monoclonal antibodies (mAbs), with the soluble host cell proteins removed in the permeate by tangential flow microfiltration. The objective of this study was to examine the use of a feed‐and‐bleed configuration to increase the effective conversion (ratio of permeate to feed flow rates) in the hollow fiber module to enable more effective washing of the precipitate. Experiments were performed using human serum Immunoglobulin G (IgG) precipitates formed with 10 mM zinc chloride and 7 wt% polyethylene glycol. The critical flux was evaluated as a function of the shear rate and IgG concentration, with the resulting correlation used to predict conditions that can achieve 90% conversion in a single pass with minimal fouling. Experimental data for both the start‐up and steady‐state performance are in good agreement with model calculations. These results were used to analyze the performance of an enhanced continuous precipitation–microfiltration process using the feed‐and‐bleed configuration for the initial capture / purification of a mAb product. 
    more » « less