 Award ID(s):
 1825406
 NSFPAR ID:
 10293642
 Date Published:
 Journal Name:
 Management Science
 Volume:
 67
 Issue:
 5
 ISSN:
 00251909
 Page Range / eLocation ID:
 2845 to 2869
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

We develop a variant of the multinomial logit model with impatient customers and study assortment optimization and pricing problems under this choice model. In our choice model, a customer incrementally views the assortment of available products in multiple stages. The patience level of a customer determines the maximum number of stages in which the customer is willing to view the assortments of products. In each stage, if the product with the largest utility provides larger utility than a minimum acceptable utility, which we refer to as the utility of the outside option, then the customer purchases that product right away. Otherwise, the customer views the assortment of products in the next stage as long as the customer’s patience level allows the customer to do so. Under the assumption that the utilities have the Gumbel distribution and are independent, we give a closedform expression for the choice probabilities. For the assortmentoptimization problem, we develop a polynomialtime algorithm to find the revenuemaximizing sequence of assortments to offer. For the pricing problem, we show that, if the sequence of offered assortments is fixed, then we can solve a convex program to find the revenuemaximizing prices, with which the decision variables are the probabilities that a customer reaches different stages. We build on this result to give a 0.878approximation algorithm when both the sequence of assortments and the prices are decision variables. We consider the assortmentoptimization problem when each product occupies some space and there is a constraint on the total space consumption of the offered products. We give a fully polynomialtime approximation scheme for this constrained problem. We use a data set from Expedia to demonstrate that incorporating patience levels, as in our model, can improve purchase predictions. We also check the practical performance of our approximation schemes in terms of both the quality of solutions and the computation times.more » « less

null (Ed.)We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and the customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Because all the utility parameters of the MNL model are unknown, the seller needs to simultaneously learn customers’ choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or, equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products [Formula: see text]. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model—the MNL model—is still open. By carefully analyzing a revenue potential function, we develop a trisectionbased policy combined with adaptive confidence bound construction, which achieves an itemindependent regret bound of [Formula: see text], where [Formula: see text] is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There are two major advantages of the proposed policy. First, the regret of all our policies has no dependence on [Formula: see text]. Second, our policies are almost assumptionfree: there is no assumption on mean utility nor any “separability” condition on the expected revenues for different assortments. We also extend our trisection search algorithm to capacitated MNL models and obtain the optimal regret [Formula: see text] (up to logrithmic factors) without any assumption on the mean utility parameters of items.more » « less

We consider dynamic assortment problems with reusable products, in which each arriving customer chooses a product within an offered assortment, uses the product for a random duration of time, and returns the product back to the firm to be used by other customers. The goal is to find a policy for deciding on the assortment to offer to each customer so that the total expected revenue over a finite selling horizon is maximized. The dynamicprogramming formulation of this problem requires a highdimensional state variable that keeps track of the onhand product inventories, as well as the products that are currently in use. We present a tractable approach to compute a policy that is guaranteed to obtain at least 50% of the optimal total expected revenue. This policy is based on constructing linear approximations to the optimal value functions. When the usage duration is infinite or follows a negative binomial distribution, we also show how to efficiently perform rollout on a simple static policy. Performing rollout corresponds to using separable and nonlinear value function approximations. The resulting policy is also guaranteed to obtain at least 50% of the optimal total expected revenue. The special case of our model with infinite usage durations captures the case where the customers purchase the products outright without returning them at all. Under infinite usage durations, we give a variant of our rollout approach whose total expected revenue differs from the optimal by a factor that approaches 1 with rate cubicroot of Cmin, where Cmin is the smallest inventory of a product. We provide computational experiments based on simulated data for dynamic assortment management, as well as real parking transaction data for the city of Seattle. Our computational experiments demonstrate that the practical performance of our policies is substantially better than their performance guarantees and that performing rollout yields noticeable improvements.more » « less

In mechanism design, the firm has an advantage over its customers in its knowledge of the state of the system, which can affect the utilities of all players. This poses the question: how can the firm utilize that information (and not additional financial incentives) to persuade customers to take actions that lead to higher revenue (or other firm utility)? When the firm is constrained to "cheap talk," and cannot credibly commit to a manner of signaling, the firm cannot change customer behavior in a meaningful way. Instead, we allow firm to commit to how they will signal in advance. Customers can then trust the signals they receive and act on their realization. This thesis contains the work of three papers, each of which applies information design to service systems and online markets. We begin by examining how a firm could signal a queue's length to arriving, impatient customers in a service system. We show that the choice of an optimal signaling mechanism can be written as a infinite linear program and then show an intuitive form for its optimal solution. We show that with the optimal fixed price and optimal signaling, a firm can generate the same revenue as it could with an observable queue and lengthdependent variable prices. Next, we study demand and inventory signaling in online markets: customers make strategic purchasing decisions, knowing the price will decrease if an item does not sell out. The firm aims to convince customers to buy now at a higher price. We show that the optimal signaling mechanism is public, and sends all customers the same information. Finally, we consider customers whose ex ante utility is not simply their expected ex post utility, but instead a function of its distribution. We bound the number of signals needed for the firm to generate their optimal utility and provide a convex program reduction of the firm's problem.more » « less

In consulting, finance, and other service industries, customers represent a revenue stream, and must be acquired and retained over time. In this paper, we study the resource allocation problem of a profit maximizing service firm that dynamically allocates its resources toward acquiring new clients and retaining unsatisfied existing ones. The interaction between acquisition and retention in our model is reflected in the cash constraint on total expected spending on acquisition and retention in each period. We formulate this problem as a dynamic program in which the firm makes decisions in both acquisition and retention after observing the current size of its customer base and receiving information about customers in danger of attrition, and we characterize the structure of the optimal acquisition and retention strategy. We show that when the firm's customer base size is relatively low, the firm should spend heavily on acquisition and try to retain every unhappy customer. However, as its customer base grows, the firm should gradually shift its emphasis from acquisition to retention, and it should also aim to strike a balance between acquisition and retention while spending its available resources. Finally, when the customer base is large enough, it may be optimal for the firm to begin spending less in both acquisition and retention. We also extend our analysis to situations where acquisition or retention success rate, as a function of resources allocation, is uncertain and show that the optimal acquisition and retention policy can be surprisingly complex. However, we develop an effective heuristic for that case. This paper aims to provide service managers some analytical principles and effective guidelines on resource allocation between these two significant activities based on their firm's customer base size.