skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of folded structure and folding thermodynamics in heterogeneous-backbone proteomimetics
Recent years have seen a growing number of examples of designed oligomeric molecules with artificial backbone connectivity that are capable of adopting complex folded tertiary structures analogous to those seen in natural proteins. A range of experimental techniques from structural biology and biophysics have been brought to bear in the study of these proteomimetic agents. Here, we discuss some considerations encountered in the characterization of high-resolution folded structure as well as folding thermodynamics of protein-like artificial backbones. We provide an overview of the use of X-ray crystallography and NMR spectroscopy in such systems and review example applications of these methods in the primary literature. Further, we provide detailed protocols for two experiments that have proved useful in our prior and ongoing efforts to compare folding thermodynamics between natural protein domains and heterogeneous-backbone counterparts.  more » « less
Award ID(s):
1807301
PAR ID:
10293681
Author(s) / Creator(s):
; ;
Editor(s):
Petersson, E. James
Date Published:
Journal Name:
Methods in enzymology
Volume:
656
ISSN:
0076-6879
Page Range / eLocation ID:
93-122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sequence-encoded folding is the foundation of protein structure and is also possible in synthetic chains of artificial chemical composition. In natural proteins, the characteristics of the unfolded state are as important as those of the folded state in determining folding energetics. While much is known about folded structures adopted by artificial protein-like chains, corresponding information about the unfolded states of these molecules is lacking. Here, we report the consequences of altered backbone composition on the structure, stability, and dynamics of the folded and unfolded states of a compact helix-rich protein. Characterization through a combination of biophysical experiments and atomistic simulation reveals effects of backbone modification that depend on both the type of artificial monomers employed and where they are applied in sequence. In general, introducing artificial connectivity in a way that reinforces characteristics of the unfolded state ensemble of the prototype natural protein minimizes the impact of chemical changes on folded stability. These findings have implications in the design of protein mimetics and provide an atomically detailed picture of the unfolded state of a natural protein and artificial analogues under non-denaturing conditions. 
    more » « less
  2. Numerical simulations of protein folding enable the design of protein-based nanomachines and nanorobots by predicting folded three-dimensional protein structures with high accuracy and revealing the protein conformation transitions during folding and unfolding. In the kinetostatic compliance method (KCM) for folding simulations, protein molecules are represented as ensembles of rigid nano-linkages connected by chemical bonds, and the folding process is driven by the kinetostatic influence of nonlinear interatomic force fields until the system converges to a free-energy minimum of the protein. Despite its strengths, the conventional KCM framework demands an excessive number of iterations to reach folded protein conformations, with each iteration requiring costly computations of interatomic force fields. To address these limitations, this work introduces a family of sign gradient descent (SGD) algorithms for predicting folded protein structures. Unlike the heuristic-based iterations of the conventional KCM framework, the proposed SGD algorithms rely on the sign of the free-energy gradient to guide the kinetostatic folding process. Owing to their faster and more robust convergence, the proposed SGD-based algorithms reduce the computational burden of interatomic force field evaluations required to reach folded conformations. Their effectiveness is demonstrated through numerical simulations of KCM-based folding of protein backbone chains. 
    more » « less
  3. Abstract Many small globular proteins exist in only two states—the physiologically relevant folded state and an inactive unfolded state. The active state is stabilized by numerous weak attractive contacts, including hydrogen bonds, other polar interactions, and the hydrophobic effect. Knowledge of these interactions is key to understanding the fundamental equilibrium thermodynamics of protein folding and stability. We focus on one such interaction, that between amide and aromatic groups. We provide a statistically convincing case for quantitative, linear entropy–enthalpy compensation in forming aromatic–amide interactions using published model compound transfer‐free energy data. 
    more » « less
  4. Abstract Proteins in the cellular milieu reside in environments crowded by macromolecules and other solutes. Although crowding can significantly impact the protein folded state stability, most experiments are conducted in dilute buffered solutions. To resolve the effect of crowding on protein stability, we use19F nuclear magnetic resonance spectroscopy to follow the reversible, two‐state unfolding thermodynamics of the N‐terminal Src homology 3 domain of theDrosophilasignal transduction protein drk in the presence of polyethylene glycols (PEGs) of various molecular weights and concentrations. Contrary to most current theories of crowding that emphasize steric protein–crowder interactions as the main driving force for entropically favored stabilization, our experiments show that PEG stabilization is accompanied by significant heat release, and entropy disfavors folding. Using our newly developed model, we find that stabilization by ethylene glycol and small PEGs is driven by favorable binding to the folded state. In contrast, for larger PEGs, chemical or soft PEG–protein interactions do not play a significant role. Instead, folding is favored by excluded volume PEG–protein interactions and an exothermic nonideal mixing contribution from release of confined PEG and water upon folding. Our results indicate that crowding acts through molecular interactions subtler than previously assumed and that interactions between solution components with both the folded and unfolded states must be carefully considered. 
    more » « less
  5. This paper proposes a sign gradient descent (SGD) algorithm for predicting the three-dimensional folded protein molecule structures under the kinetostatic compliance method (KCM). In the KCM framework, which can be used to simulate the range of motion of peptide-based nanorobots/nanomachines, protein molecules are modeled as a large number of rigid nano-linkages that form a kinematic mechanism under motion constraints imposed by chemical bonds while folding under the kinetostatic effect of nonlinear interatomic force fields. In a departure from the conventional successive kinetostatic fold compliance framework, the proposed SGD-based iterative algorithm in this paper results in convergence to the local minima of the free energy of protein molecules corresponding to their final folded conformations in a faster and more robust manner. KCM-based folding dynamics simulations of the backbone chains of protein molecules demonstrate the effectiveness of the proposed algorithm. 
    more » « less