Abstract In tropical forests, both vegetation characteristics and soil properties are important not only for controlling energy, water, and gas exchanges directly but also determining the competition among species, successional dynamics, forest structure and composition. However, the joint effects of the two factors have received limited attention in Earth system model development. Here we use a vegetation demographic model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) implemented in the Energy Exascale Earth System Model (E3SM) Land Model (ELM), ELM‐FATES, to explore how plant traits and soil properties affect tropical forest growth and composition concurrently. A large ensemble of simulations with perturbed vegetation and soil hydrological parameters is conducted at the Barro Colorado Island, Panama. The simulations are compared against observed carbon, energy, and water fluxes. We find that soil hydrological parameters, particularly the scaling exponent of the soil retention curve (Bsw), play crucial roles in controlling forest diversity, with higherBswvalues (>7) favoring late successional species in competition, and lowerBswvalues (1 ∼ 7) promoting the coexistence of early and late successional plants. Considering the additional impact of soil properties resolves a systematic bias of FATES in simulating sensible/latent heat partitioning with repercussion on water budget and plant coexistence. A greater fraction of deeper tree roots can help maintain the dry‐season soil moisture and plant gas exchange. As soil properties are as important as vegetation parameters in predicting tropical forest dynamics, more efforts are needed to improve parameterizations of soil functions and belowground processes and their interactions with aboveground vegetation dynamics.
more »
« less
Maintenance of high diversity in mechanistic forest dynamics models of competition for light
Although early theoretical work suggests that competition for light erodes successional diversity in forests, verbal models and recent numerical work with complex mechanistic forest simulators suggest that disturbance in such systems can maintain successional diversity. Nonetheless, if and how allocation tradeoffs between competitors interact with disturbance to maintain high diversity in successional systems remains poorly understood. Here, using mechanistic and analytically tractable models, we show that a theoretically unlimited number of coexisting species can be maintained by allocational tradeoffs such as investing in light-harvesting organs vs. height growth, investing in reproduction vs. growth or survival vs. growth. The models describe the successional dynamics of a forest composed of many patches subjected to random or periodic disturbance, and are consistent with physiologically mechanistic terrestrial ecosystem models, including the terrestrial components of recent Earth System Models. We show that coexistence arises in our models because species specialize in the successional time they best exploit the light environment and convert resources into seeds or contribute to advance regeneration. We also show that our results are relevant to non-forested ecosystems by demonstrating the emergence of similar dynamics in a mechanistic model of competition for light among annual plant species. Finally, we show that coexistence in our models is relatively robust to the introduction of intraspecific variability that weakens the competitive hierarchy caused by asymmetric competition for light.
more »
« less
- Award ID(s):
- 2017804
- PAR ID:
- 10293704
- Date Published:
- Journal Name:
- Ecological monographs
- ISSN:
- 1557-7015
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Changes in CO 2 concentration and climate are likely to alter disturbance regimes and competitive outcomes among tree species, which ultimately can result in shifts of species and biome boundaries. Such changes are already evident in high latitude forests, where waterlogged soils produced by topography, surficial geology, and permafrost are an important driver of forest dynamics. Predicting such effects under the novel conditions of the future requires models with direct and mechanistic links of abiotic drivers to growth and competition. We enhanced such a forest landscape model (PnET-Succession in LANDIS-II) to allow simulation of waterlogged soils and their effects on tree growth and competition. We formally tested how these modifications alter water balance on wetland and permafrost sites, and their effect on tree growth and competition. We applied the model to evaluate its promise for mechanistically simulating species range expansion and contraction under climate change across a latitudinal gradient in Siberian Russia. We found that higher emissions scenarios permitted range expansions that were quicker and allowed a greater diversity of invading species, especially at the highest latitudes, and that disturbance hastened range shifts by overcoming the natural inertia of established ecological communities. The primary driver of range advances to the north was altered hydrology related to thawing permafrost, followed by temperature effects on growth. Range contractions from the south (extirpations) were slower and less tied to emissions or latitude, and were driven by inability to compete with invaders, or disturbance. An important non-intuitive result was that some extant species were killed off by extreme cold events projected under climate change as greater weather extremes occurred over the next 30 years, and this had important effects on subsequent successional trajectories. The mechanistic linkages between climate and soil water dynamics in this forest landscape model produced tight links between climate inputs, physiology of vegetation, and soils at a monthly time step. The updated modeling system can produce high quality projections of climate impacts on forest species range shifts by accounting for the interacting effects of CO 2 concentration, climate (including longer growing seasons), seed dispersal, disturbance, and soil hydrologic properties.more » « less
-
Abstract Tropical forest diversity governs forest structures, compositions, and influences the ecosystem response to environmental changes. Better representation of forest diversity in ecosystem demography (ED) models within Earth system models is thus necessary to accurately capture and predict how tropical forests affect Earth system dynamics subject to climate changes. However, achieving forest coexistence in ED models is challenging due to their computational expense and limited understanding of the mechanisms governing forest functional diversity. This study applies the advanced Multi‐Objective Population‐based Parallel Local Surrogate‐assisted search (MOPLS) optimization algorithm to simultaneously calibrate ecosystem fluxes and coexistence of two physiologically distinct tropical forest species in a size‐ and age‐structured ED model with realistic representation of wood harvest. MOPLS exhibits satisfactory model performance, capturing hydrological and biogeochemical dynamics observed in Barro Colorado Island, Panama, and robustly achieving coexistence for the two representative forest species. This demonstrates its effectiveness in calibrating tropical forest coexistence. The optimal solution is applied to investigate the recovery trajectories of forest biomass after various intensities of clear‐cut deforestation. We find that a 20% selective logging can take approximately 40 years for aboveground biomass to return to the initial level. This is due to the slow recovery rate of late successional trees, which only increases by 4% over the 40‐year period. This study lays the foundation to calibrate coexistence in ED models. MOPLS can be an effective tool to help better represent tropical forest diversity in Earth system models and inform forest management practices.more » « less
-
*Differential disturbance severity effects on forest vegetation structure, species diversity, and net primary production (NPP) have been long theorized and observed. Here, we examined these factors concurrently to explore the potential for a mechanistic pathway linking disturbance severity, changes in light environment, leaf functional response, and wood NPP in a temperate hardwood forest. *Using a suite of measurements spanning an experimental gradient of tree mortality, we evaluated the direction and magnitude of change in vegetation structural and diversity indexes in relation to wood NPP. Informed by prior observations, we hypothesized that forest structural and species diversity changes and wood NPP would exhibit either a linear, unimodal, or threshold response in relation to disturbance severity. We expected increasing disturbance severity would progressively shift subcanopy light availability and leaf traits, thereby coupling structural and species diversity changes with primary production. *Linear or unimodal changes in three of four vegetation structural indexes were observed across the gradient in disturbance severity. However, disturbance-related changes in vegetation structure were not consistently correlated with shifts in light environment, leaf traits, and wood NPP. Species diversity indexes did not change in response to rising disturbance severity. *We conclude that, in our study system, the sensitivity of wood NPP to rising disturbance severity is generally tied to changing vegetation structure but not species diversity. Changes in vegetation structure are inconsistently coupled with light environment and leaf traits, resulting in mixed support for our hypothesized cascade linking disturbance severity to wood NPP.more » « less
-
Lucash, Melissa S (Ed.)Boreal forests are found at high northern latitudes and form the largest terrestrial biome in the world. They comprise 30-50% of the world’s forest carbon stocks (vs. 14% in temperate forests. Temperatures are increasing rapidly in high northern latitudes (IPCC 2021), resulting in modified disturbance regimes and thawing of permafrost, and the socio-economic pressure to harvest timber is growing in currently unharvested areas. Attempts to predict how these changes will affect boreal forests must account for interactions among multiple disturbances (e.g., wind, insects, fire, harvest), seed dispersal, species growth and competition, and changing climate, and therefore uncertainty persists about how these changes will affect composition and function of this biome. Our objectives for this research were to 1) Use LANDIS-II to project forest dynamics under a range of climate and disturbance scenarios across a latitudinal gradient spanning the Siberian taiga from the arctic tundra to steppe ecotones, 2) Quantify the change in albedo and harvesting across bioclimatic zones and climates, 3) Identify the factor(s) that are the strongest drivers of these changesmore » « less