We propose a novel family of connectionist models based on kernel machines and consider the problem of learning layer by layer a compositional hypothesis class (i.e., a feedforward, multilayer architecture) in a supervised setting. In terms of the models, we present a principled method to “kernelize” (partly or completely) any neural network (NN). With this method, we obtain a counterpart of any given NN that is powered by kernel machines instead of neurons. In terms of learning, when learning a feedforward deep architecture in a supervised setting, one needs to train all the components simultaneously using backpropagation (BP) since there are no explicit targets for the hidden layers (Rumelhart, Hinton, & Williams, 1986). We consider without loss of generality the two-layer case and present a general framework that explicitly characterizes a target for the hidden layer that is optimal for minimizing the objective function of the network. This characterization then makes possible a purely greedy training scheme that learns one layer at a time, starting from the input layer. We provide instantiations of the abstract framework under certain architectures and objective functions. Based on these instantiations, we present a layer-wise training algorithm for an l-layer feedforward network for classification, wheremore »
A theory of high dimensional regression with arbitrary correlations between input features and target functions: sample complexity, multiple descent curves and a hierarchy of phase transitions
The performance of neural networks depends on precise relationships between four distinct ingredients: the architecture, the loss function, the statistical structure of inputs, and the ground truth target function. Much theoretical work has focused on understanding the role of the first two ingredients under highly simplified models of random uncorrelated data and target functions. In contrast, performance likely relies on a conspiracy between the statistical structure of the input distribution and the structure of the function to be learned. To understand this better we revisit ridge regression in high dimensions, which corresponds to an exceedingly simple architecture and loss function, but we analyze its performance under arbitrary correlations between input features and the target function. We find a rich mathematical structure that includes: (1) a dramatic reduction in sample complexity when the target function aligns with data anisotropy; (2) the existence of multiple descent curves; (3) a sequence of phase transitions in the performance, loss landscape, and optimal regularization as a function of the amount of data that explains the first two effects.
- Award ID(s):
- 1845166
- Publication Date:
- NSF-PAR ID:
- 10293707
- Journal Name:
- International Conference on Machine Learning
- Volume:
- 139
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability.more »
-
Abstract
Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters -
Introduction: Computed tomography perfusion (CTP) imaging requires injection of an intravenous contrast agent and increased exposure to ionizing radiation. This process can be lengthy, costly, and potentially dangerous to patients, especially in emergency settings. We propose MAGIC, a multitask, generative adversarial network-based deep learning model to synthesize an entire CTP series from only a non-contrasted CT (NCCT) input. Materials and Methods: NCCT and CTP series were retrospectively retrieved from 493 patients at UF Health with IRB approval. The data were deidentified and all images were resized to 256x256 pixels. The collected perfusion data were analyzed using the RapidAI CT Perfusion analysis software (iSchemaView, Inc. CA) to generate each CTP map. For each subject, 10 CTP slices were selected. Each slice was paired with one NCCT slice at the same location and two NCCT slices at a predefined vertical offset, resulting in 4.3K CTP images and 12.9K NCCT images used for training. The incorporation of a spatial offset into the NCCT input allows MAGIC to more accurately synthesize cerebral perfusive structures, increasing the quality of the generated images. The studies included a variety of indications, including healthy tissue, mild infarction, and severe infarction. The proposed MAGIC model incorporates a novel multitaskmore »
-
Systems for ML inference are widely deployed today, but they typically optimize ML inference workloads using techniques designed for conventional data serving workloads and miss critical opportunities to leverage the statistical nature of ML. In this paper, we present WILLUMP, an optimizer for ML inference that introduces two statistically-motivated optimizations targeting ML applications whose performance bottleneck is feature computation. First, WILLUMP automatically cascades feature computation for classification queries: WILLUMP classifies most data inputs using only high-value, low-cost features selected through empirical observations of ML model performance, improving query performance by up to 5× without statistically significant accuracy loss. Second, WILLUMP accurately approximates ML top-K queries, discarding low-scoring inputs with an automatically constructed approximate model and then ranking the remainder with a more powerful model, improving query performance by up to 10× with minimal accuracy loss. WILLUMP automatically tunes these optimizations’ parameters to maximize query performance while meeting an accuracy target. Moreover, WILLUMP complements these statistical optimizations with compiler optimizations to automatically generate fast inference code for ML applications. We show that WILLUMP improves the end-to-end performance of real-world ML inference pipelines curated from major data science competitions by up to 16× without statistically significant loss of accuracy.