skip to main content


Title: Pure and Spurious Critical Points: a Geometric Study of Linear Networks
The critical locus of the loss function of a neural network is determined by the geometry of the functional space and by the parameterization of this space by the network's weights. We introduce a natural distinction between pure critical points, which only depend on the functional space, and spurious critical points, which arise from the parameterization. We apply this perspective to revisit and extend the literature on the loss function of linear neural networks. For this type of network, the functional space is either the set of all linear maps from input to output space, or a determinantal variety, i.e., a set of linear maps with bounded rank. We use geometric properties of determinantal varieties to derive new results on the landscape of linear networks with different loss functions and different parameterizations. Our analysis clearly illustrates that the absence of "bad" local minima in the loss landscape of linear networks is due to two distinct phenomena that apply in different settings: it is true for arbitrary smooth convex losses in the case of architectures that can express all linear maps ("filling architectures") but it holds only for the quadratic loss when the functional space is a determinantal variety ("non-filling architectures"). Without any assumption on the architecture, smooth convex losses may lead to landscapes with many bad minima.  more » « less
Award ID(s):
1845360 1816753
NSF-PAR ID:
10159685
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
international conference on learning representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While cross entropy (CE) is the most commonly used loss function to train deep neural networks for classification tasks, many alternative losses have been developed to obtain better empirical performance. Among them, which one is the best to use is still a mystery, because there seem to be multiple factors affecting the answer, such as properties of the dataset, the choice of network architecture, and so on. This paper studies the choice of loss function by examining the last-layer features of deep networks, drawing inspiration from a recent line work showing that the global optimal solution of CE and mean-square-error (MSE) losses exhibits a Neural Collapse phenomenon. That is, for sufficiently large networks trained until convergence, (i) all features of the same class collapse to the corresponding class mean and (ii) the means associated with different classes are in a configuration where their pairwise distances are all equal and maximized. We extend such results and show through global solution and landscape analyses that a broad family of loss functions including commonly used label smoothing (LS) and focal loss (FL) exhibits Neural Collapse. Hence, all relevant losses (i.e., CE, LS, FL, MSE) produce equivalent features on training data. In particular, based on the unconstrained feature model assumption, we provide either the global landscape analysis for LS loss or the local landscape analysis for FL loss and show that the (only!) global minimizers are neural collapse solutions, while all other critical points are strict saddles whose Hessian exhibit negative curvature directions either in the global scope for LS loss or in the local scope for FL loss near the optimal solution. The experiments further show that Neural Collapse features obtained from all relevant losses (i.e., CE, LS, FL, MSE) lead to largely identical performance on test data as well, provided that the network is sufficiently large and trained until convergence. 
    more » « less
  2. Modern neural network architectures use structured linear transformations, such as low-rank matrices, sparse matrices, permutations, and the Fourier transform, to improve inference speed and reduce memory usage compared to general linear maps. However, choosing which of the myriad structured transformations to use (and its associated parameterization) is a laborious task that requires trading off speed, space, and accuracy. We consider a different approach: we introduce a family of matrices called kaleidoscope matrices (K-matrices) that provably capture any structured matrix with near-optimal space (parameter) and time (arithmetic operation) complexity. We empirically validate that K-matrices can be automatically learned within end-to-end pipelines to replace hand-crafted procedures, in order to improve model quality. For example, replacing channel shuffles in ShuffleNet improves classification accuracy on ImageNet by up to 5%. K-matrices can also simplify hand-engineered pipelines---we replace filter bank feature computation in speech data preprocessing with a learnable kaleidoscope layer, resulting in only 0.4% loss in accuracy on the TIMIT speech recognition task. In addition, K-matrices can capture latent structure in models: for a challenging permuted image classification task, adding a K-matrix to a standard convolutional architecture can enable learning the latent permutation and improve accuracy by over 8 points. We provide a practically efficient implementation of our approach, and use K-matrices in a Transformer network to attain 36% faster end-to-end inference speed on a language translation task. 
    more » « less
  3. Signal maps are essential for the planning and operation of cellular networks. However, the measurements needed to create such maps are expensive, often biased, not always reflecting the performance metrics of interest, and posing privacy risks. In this paper, we develop a unified framework for predicting cellular performance maps from limited available measurements. Our framework builds on a state-of-the-art random-forest predictor, or any other base predictor. We propose and combine three mechanisms that deal with the fact that not all measurements are equally important for a particular prediction task. First, we design quality-of-service functions (Q), including signal strength (RSRP) but also other metrics of interest to operators, such as number of bars, coverage (improving recall by 76%-92%) and call drop probability (reducing error by as much as 32%). By implicitly altering the loss function employed in learning, quality functions can also improve prediction for RSRP itself where it matters (e.g., MSE reduction up to 27% in the low signal strength regime, where high accuracy is critical). Second, we introduce weight functions (W) to specify the relative importance of prediction at different locations and other parts of the feature space. We propose re-weighting based on importance sampling to obtain unbiased estimators when the sampling and target distributions are different. This yields improvements up to 20% for targets based on spatially uniform loss or losses based on user population density. Third, we apply the Data Shapley framework for the first time in this context: to assign values (ϕ) to individual measurement points, which capture the importance of their contribution to the prediction task. This can improve prediction (e.g., from 64% to 94% in recall for coverage loss) by removing points with negative values and storing only the remaining data points (i.e., as low as 30%), which also has the side-benefit of helping privacy. We evaluate our methods and demonstrate significant improvement in prediction performance, using several real-world datasets. 
    more » « less
  4. We study the complexity of optimizing nonsmooth nonconvex Lipschitz functions by producing (δ, ǫ)-Goldstein stationary points. Several recent works have presented randomized algorithms that produce such points using eO(δ−1ǫ−3) first-order oracle calls, independent of the dimension d. It has been an open problem as to whether a similar result can be obtained via a deterministic algorithm. We resolve this open problem, showing that randomization is necessary to obtain a dimension-free rate. In particular, we prove a lower bound of (d) for any deterministic algorithm. Moreover, we show that unlike smooth or convex optimization, access to function values is required for any deterministic algorithm to halt within any finite time horizon. On the other hand, we prove that if the function is even slightly smooth, then the dimension-free rate of eO(δ−1ǫ−3) can be obtained by a deterministic algorithm with merely a logarithmic dependence on the smoothness parameter. Motivated by these findings, we turn to study the complexity of deterministically smoothing Lipschitz functions. Though there are well-known efficient black-box randomized smoothings, we start by showing that no such deterministic procedure can smooth functions in a meaningful manner (suitably defined), resolving an open question in the literature. We then bypass this impossibility result for the structured case of ReLU neural networks. To that end, in a practical “white-box” setting in which the optimizer is granted access to the network’s architecture, we propose a simple, dimension-free, deterministic smoothing of ReLU networks that provably preserves (δ, ǫ)-Goldstein stationary points. Our method applies to a variety of architectures of arbitrary depth, including ResNets and ConvNets. Combined with our algorithm for slightly-smooth functions, this yields the first deterministic, dimension-free algorithm for optimizing ReLU networks, circumventing our lower bound. 
    more » « less
  5. null (Ed.)
    We develop a convex analytic framework for ReLU neural networks which elucidates the inner workings of hidden neurons and their function space characteristics. We show that neural networks with rectified linear units act as convex regularizers, where simple solutions are encouraged via extreme points of a certain convex set. For one dimensional regression and classification, as well as rank-one data matrices, we prove that finite two-layer ReLU networks with norm regularization yield linear spline interpolation. We characterize the classification decision regions in terms of a closed form kernel matrix and minimum L1 norm solutions. This is in contrast to Neural Tangent Kernel which is unable to explain neural network predictions with finitely many neurons. Our convex geometric description also provides intuitive explanations of hidden neurons as auto encoders. In higher dimensions, we show that the training problem for two-layer networks can be cast as a finite dimensional convex optimization problem with infinitely many constraints. We then provide a family of convex relaxations to approximate the solution, and a cutting-plane algorithm to improve the relaxations. We derive conditions for the exactness of the relaxations and provide simple closed form formulas for the optimal neural network weights in certain cases. We also establish a connection to ℓ0-ℓ1 equivalence for neural networks analogous to the minimal cardinality solutions in compressed sensing. Extensive experimental results show that the proposed approach yields interpretable and accurate models. 
    more » « less