skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring Trait Trade-Offs for Fungal Decomposers in a Southern California Grassland
Fungi are important decomposers in terrestrial ecosystems, so their responses to climate change might influence carbon (C) and nitrogen (N) dynamics. We investigated whether growth and activity of fungi under drought conditions were structured by trade-offs among traits in 15 fungal isolates from a Mediterranean Southern California grassland. We inoculated fungi onto sterilized litter that was incubated at three moisture levels (4, 27, and 50% water holding capacity, WHC). For each isolate, we characterized traits that described three potential lifestyles within the newly proposed “YAS” framework: growth yield, resource acquisition, and stress tolerance. Specifically, we measured fungal hyphal length per unit litter decomposition for growth yield; the potential activities of the extracellular enzymes cellobiohydrolase (CBH), β -glucosidase (BG), β -xylosidase (BX), and N-acetyl- β - D -glucosaminidase (NAG) for resource acquisition; and ability to grow in drought vs. higher moisture levels for drought stress tolerance. Although, we had hypothesized that evolutionary and physiological trade-offs would elicit negative relationships among traits, we found no supporting evidence for this hypothesis. Across isolates, growth yield, drought stress tolerance, and extracellular enzyme activities were not significantly related to each other. Thus, it is possible that drought-induced shifts in fungal community composition may not necessarily lead to changes in fungal biomass or decomposer ability in this arid grassland.  more » « less
Award ID(s):
1912525
PAR ID:
10293765
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phenotypic plasticity of traits is commonly measured in plants to improve understanding of organismal and ecosystem responses to climate change but is far less studied for microbes. Specifically, decomposer fungi are thought to display high levels of phenotypic plasticity and their functions have important implications for ecosystem dynamics. Assessing the phenotypic plasticity of fungal traits may therefore be important for predicting fungal community response to climate change. Here, we assess the phenotypic plasticity of 15 fungal isolates (12 species) from a Southern California grassland. Fungi were incubated on litter at five moisture levels (ranging from 4–50% water holding capacity) and at five temperatures (ranging from 4–36 °C). After incubation, fungal biomass and activities of four extracellular enzymes (cellobiohydrolase (CBH), β-glucosidase (BG), β-xylosidase (BX), and N-acetyl-β-D-glucosaminidase (NAG)) were measured. We used response surface methodology to determine how fungal phenotypic plasticity differs across the moisture-temperature gradient. We hypothesized that fungal biomass and extracellular enzyme activities would vary with moisture and temperature and that the shape of the response surface would vary between fungal isolates. We further hypothesized that more closely related fungi would show more similar response surfaces across the moisture-temperature gradient. In support of our hypotheses, we found that plasticity differed between fungi along the temperature gradient for fungal biomass and for all the extracellular enzyme activities. Plasticity also differed between fungi along the moisture gradient for BG activity. These differences appear to be caused by variation mainly at the moisture and temperature extremes. We also found that more closely related fungi had more similar extracellular enzymes activities at the highest temperature. Altogether, this evidence suggests that with global warming, fungal biodiversity may become increasingly important as functional traits tend to diverge along phylogenetic lines at higher temperatures. 
    more » « less
  2. If we better understand how fungal responses to global change are governed by their traits, we can improve predictions of fungal community composition and ecosystem function. Specifically, we can examine trade-offs among traits, in which the allocation of finite resources toward one trait reduces the investment in others. We hypothesized that trade-offs among fungal traits relating to rapid growth, resource capture, and stress tolerance sort fungal species into discrete life history strategies. We used the Biolog Filamentous Fungi database to calculate maximum growth rates of 37 fungal species and then compared them to their functional traits from the fun fun database. In partial support of our hypothesis, maximum growth rate displayed a negative relationship with traits related to resource capture. Moreover, maximum growth rate displayed a positive relationship with amino acid permease, forming a putative Fast Growth life history strategy. A second putative life history strategy is characterized by a positive relationship between extracellular enzymes, including cellobiohydrolase 6, cellobiohydrolase 7, crystalline cellulase AA9, and lignin peroxidase. These extracellular enzymes were negatively related to chitosanase 8, an enzyme that can break down a derivative of chitin. Chitosanase 8 displayed a positive relationship with many traits that were hypothesized to cluster separately, forming a putative Blended life history strategy characterized by certain resource capture, fast growth, and stress tolerance traits. These trait relationships complement previously explored microbial trait frameworks, such as the Competitor-Stress Tolerator-Ruderal and the Yield-Resource Acquisition-Stress Tolerance schemes. 
    more » « less
  3. Climate change will increase soil drying, altering microbial communities via increasing water stress and decreasing resource availability. The responses of these microbial communities to changing environments is likely governed by physiological tradeoffs between high yield, resource acquisition, and stress tolerance (Y-A-S framework). We leveraged a unique field experiment that manipulates both drought and carbon availability across two years and three land uses, and we used both metagenomic and bioassay indicators of the three microbial community traits to test the following hypotheses: 1. Drought increases microbial allocation to stress tolerance functions, at the expense of growth and resource acquisition. 2. Because microbes are resource-limited under drought, increased carbon will enable greater expression of stress tolerance. 3. All three key life history traits described in the YAS framework will trade off, especially when resources are limited. Drought did increase microbial physiological investment in stress tolerance (measured via trehalose production), but we saw few other changes in microbial communities under drought. Carbon addition increased resource acquisition (measured via enzyme activity and resource acquisition gene abundance) and stress tolerance (trehalose assay), but did so in both drought and average rainfall environments. We found no evidence of trait tradeoffs, as we found no significant negative correlations between traits (measured via bioassay and metagenomics). In summary, we found C addition, and to a lesser extent, drought, both altered microbial community function and functional genes. However, resources did not alter drought response in a way that was consistent with theory of life history tradeoffs. 
    more » « less
  4. Abstract Plant populations are limited by resource availability and exhibit physiological trade‐offs in resource acquisition strategies. These trade‐offs may constrain the ability of populations to exhibit fast growth rates under water limitation and high cover of neighbours. However, traits that confer drought tolerance may also confer resistance to competition. It remains unclear how fitness responses to these abiotic conditions and biotic interactions combine to structure grassland communities and how this relationship may change along a gradient of water availability.To address these knowledge gaps, we estimated the low‐density growth rates of populations in drought conditions with low neighbour cover and in ambient conditions with average neighbour cover for 82 species in six grassland communities across the Central Plains and Southwestern United States. We assessed the relationship between population tolerance to drought and resistance to competition and determined if this relationship was consistent across a precipitation gradient. We also tested whether population growth rates could be predicted using plant functional traits.Across six sites, we observed a positive correlation between low‐density population growth rates in drought and in the presence of interspecific neighbours. This positive relationship was particularly strong in the grasslands of the northern Great Plains but weak in the most xeric grasslands. High leaf dry matter content and a low (more negative) leaf turgor loss point were associated with high population growth rates in drought and with neighbours in most grassland communities.Synthesis: A better understanding of how both biotic and abiotic factors impact population fitness provides valuable insights into how grasslands will respond to extreme drought. Our results advance plant strategy theory by suggesting that drought tolerance increases population resistance to interspecific competition in grassland communities. However, this relationship is not evident in the driest grasslands, where above‐ground competition is likely less important. Leaf dry matter content and turgor loss point may help predict which populations will establish and persist based on local water availability and neighbour cover, and these predictions can be used to guide the conservation and restoration of biodiversity in grasslands. 
    more » « less
  5. Summary Intraspecific variation in functional traits may mediate tree species' drought resistance, yet whether trait variation is due to genotype (G), environment (E), or G×E interactions remains unknown. Understanding the drivers of intraspecific trait variation and whether variation mediates drought response can improve predictions of species' response to future drought.Using populations of quaking aspen spanning a climate gradient, we investigated intraspecific variation in functional traits in the field as well as the influence of G and E among propagules in a common garden. We also tested for trait‐mediated trade‐offs in growth and drought stress tolerance.We observed intraspecific trait variation among the populations, yet this variation did not necessarily translate to higher drought stress tolerance in hotter/drier populations. Additionally, plasticity in the common garden was low, especially in propagules derived from the hottest/driest population. We found no growth–drought stress tolerance trade‐offs and few traits exhibited significant relationships with mortality in the natural populations, suggesting that intraspecific trait variation among the traits measured did not strongly mediate responses to drought stress.Our results highlight the limits of trait‐mediated responses to drought stress and the complex G×E interactions that may underlie drought stress tolerance variation in forests in dry environments. 
    more » « less