I asked whether Grime's triangle of competitive, stress tolerance and ruderal ecological strategies—which was originally developed for plants—applies to microbes. I conducted a synthesis of empirical studies that tested relationships among microbial traits presumed to define the competitive, stress tolerance and ruderal, and other ecological strategies. There was broad support for Grime's triangle. However, the ecological strategies were inconsistently linked to shifts in microbial communities under environmental changes like nitrogen and phosphorus addition, warming, drought, etc. We may be missing important ecological strategies that more closely influence microbial community composition under shifting environmental conditions. We may need to start by documenting changes in microbial communities in response to environmental conditions at fine spatiotemporal scales relevant for microbes. We can then develop empirically based ecological strategies, rather than modifying those based on plant ecology.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Synthesis . Microbes appear to sort into similar ecological strategies as plants. However, these microbial ecological strategies do not consistently predict how community composition will shift under environmental change. By starting ‘from the ground up’, we may be able to delineate ecological strategies more relevant for microbes. -
Abstract Climate change is affecting fungal communities and their function in terrestrial ecosystems. Despite making progress in the understanding of how the fungal community responds to global change drivers in natural ecosystems, little is known on how fungi respond at the species level. Understanding how fungal species respond to global change drivers, such as warming, is critical, as it could reveal adaptation pathways to help us to better understand ecosystem functioning in response to global change. Here, we present a model study to track species-level responses of fungi to warming—and associated drying—in a decade-long global change field experiment; we focused on two free-living saprotrophic fungi which were found in high abundance in our site, Mortierella and Penicillium. Using microbiological isolation techniques, combined with whole genome sequencing of fungal isolates, and community level metatranscriptomics, we investigated transcription-level differences of functional categories and specific genes involved in catabolic processes, cell homeostasis, cell morphogenesis, DNA regulation and organization, and protein biosynthesis. We found that transcription-level responses were mostly species-specific but that under warming, both fungi consistently invested in the transcription of critical genes involved in catabolic processes, cell morphogenesis, and protein biosynthesis, likely allowing them to withstand a decade of chronic stress. Overall, our work supports the idea that fungi that invest in maintaining their catabolic rates and processes while growing and protecting their cells may survive under global climate change.
-
Abstract Microorganisms are the primary engines of biogeochemical processes and foundational to the provisioning of ecosystem services to human society. Free‐living microbial communities (microbiomes) and their functioning are now known to be highly sensitive to environmental change. Given microorganisms' capacity for rapid evolution, evolutionary processes could play a role in this response. Currently, however, few models of biogeochemical processes explicitly consider how microbial evolution will affect biogeochemical responses to environmental change. Here, we propose a conceptual framework for explicitly integrating evolution into microbiome–functioning relationships. We consider how microbiomes respond simultaneously to environmental change via four interrelated processes that affect overall microbiome functioning (physiological acclimation, demography, dispersal and evolution). Recent evidence in both the laboratory and the field suggests that ecological and evolutionary dynamics occur simultaneously within microbiomes; however, the implications for biogeochemistry under environmental change will depend on the timescales over which these processes contribute to a microbiome's response. Over the long term, evolution may play an increasingly important role for microbially driven biogeochemical responses to environmental change, particularly to conditions without recent historical precedent.
-
Abstract Nitrogen (N) limitation to net primary production is widespread and influences the responsiveness of ecosystems to many components of global environmental change. Logic and both simple simulation (Vitousek and Fieldin in Biogeochemistry 46: 179–202, 1999) and analytical models (Menge in Ecosystems 14:519–532, 2011) demonstrate that the co-occurrence of losses of N in forms that organisms within an ecosystem cannot control and barriers to biological N fixation (BNF) that keep this process from responding to N deficiency are necessary for the development and persistence of N limitation. Models have focused on the continuous process of leaching losses of dissolved organic N in biologically unavailable forms, but here we use a simple simulation model to show that discontinuous losses of ammonium and nitrate, normally forms of N whose losses organisms can control, can be uncontrollable by organisms and can contribute to N limitation under realistic conditions. These discontinuous losses can be caused by temporal variation in precipitation or by ecosystem-level disturbance like harvest, fire, and windthrow. Temporal variation in precipitation is likely to increase and to become increasingly important in causing N losses as anthropogenic climate change proceeds. We also demonstrate that under the conditions simulated here, differentially intense grazing on N- and P-rich symbiotic N fixers is the most important barrier to the responsiveness of BNF to N deficiency.
-
Abstract Phenotypic plasticity of traits is commonly measured in plants to improve understanding of organismal and ecosystem responses to climate change but is far less studied for microbes. Specifically, decomposer fungi are thought to display high levels of phenotypic plasticity and their functions have important implications for ecosystem dynamics. Assessing the phenotypic plasticity of fungal traits may therefore be important for predicting fungal community response to climate change. Here, we assess the phenotypic plasticity of 15 fungal isolates (12 species) from a Southern California grassland. Fungi were incubated on litter at five moisture levels (ranging from 4–50% water holding capacity) and at five temperatures (ranging from 4–36 °C). After incubation, fungal biomass and activities of four extracellular enzymes (cellobiohydrolase (CBH), β-glucosidase (BG), β-xylosidase (BX), and N-acetyl-β-D-glucosaminidase (NAG)) were measured. We used response surface methodology to determine how fungal phenotypic plasticity differs across the moisture-temperature gradient. We hypothesized that fungal biomass and extracellular enzyme activities would vary with moisture and temperature and that the shape of the response surface would vary between fungal isolates. We further hypothesized that more closely related fungi would show more similar response surfaces across the moisture-temperature gradient. In support of our hypotheses, we found that plasticity differed between fungi along the temperature gradient for fungal biomass and for all the extracellular enzyme activities. Plasticity also differed between fungi along the moisture gradient for BG activity. These differences appear to be caused by variation mainly at the moisture and temperature extremes. We also found that more closely related fungi had more similar extracellular enzymes activities at the highest temperature. Altogether, this evidence suggests that with global warming, fungal biodiversity may become increasingly important as functional traits tend to diverge along phylogenetic lines at higher temperatures.
-
ABSTRACT Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro‐organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function
. Trait‐based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and ‐omics‐based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFunis built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait‐based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology. -
The dominant U.S. cultural norms shape science, technology, engineering, and math (STEM), and in turn, these norms shape science communication, further perpetuating oppressive systems. Despite being a core scientific skill, science communication research and practice lack inclusive training spaces that center marginalized identities. We address this need with a healing-centered counterspace grounded in the key principles of inclusive science communication: ReclaimingSTEM. ReclaimingSTEM is a science communication and science policy training space that centers the experiences, needs, and wants of people from marginalized communities. ReclaimingSTEM problematizes and expands the definitions of “what counts” as science communication. We organize ReclaimingSTEM with intentionality, emphasizing inclusion at every part of the process. Since initiating in 2018, five ReclaimingSTEM workshops have been held in multiple locations, both in-person and virtually, reaching more than 700 participants from all over the globe. In this paper, we share our model for ReclaimingSTEM, reflections of workshop participants and speakers, barriers faced during organizing, and recommendations for creating truly inclusive practices in science communication spaces.