skip to main content


Title: Multiband Spectrum Sensing with Non-exponential Channel Occupancy Times
In a wireless network with dynamic spectrum sharing, tracking temporal spectrum holes across a wide spectrum band is a challenging task. We consider a scenario in which the spectrum is divided into a large number of bands or channels, each of which has the potential to provide dynamic spectrum access opportunities. The occupancy times of each band by primary users are generally non-exponentially distributed. We develop an approach to determine and parameterize a small selected subset of the bands with good spectrum access opportunities, using limited computational resources under noisy measurements. We model the noisy measurements of the received signal in each band as a bivariate Markov modulated Gaussian process, which can be viewed as a continuous-time bivariate Markov chain observed through Gaussian noise. The underlying bivariate Markov process allows for the characterization of non-exponentially distributed state sojourn times. The proposed scheme combines an online expectation-maximization algorithm for parameter estimation with a computing budget allocation algorithm. Observation time is allocated across the bands to determine the subset of G out of G frequency bands with the largest mean idle times for dynamic spectrum access and at the same time to obtain accurate parameter estimates for this subset of bands. Our simulation results show that when channel holding times are non-exponential, the proposed scheme achieves a substantial improvement in the probability of correct selection of the best subset of bands compared to an approach based on a (univariate) Markov modulated Gaussian process model.  more » « less
Award ID(s):
2034616
NSF-PAR ID:
10293938
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Communications
ISSN:
1550-3607
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Precise fundamental atmospheric stellar parameters and abundance determination of individual elements in stars are important for all stellar population studies. Non–local thermodynamic equilibrium (non-LTE; hereafter NLTE) models are often important for such high precision, however, can be computationally complex and expensive, which renders the models less utilized in spectroscopic analyses. To alleviate the computational burden of such models, we developed a robust 1D, NLTE fundamental atmospheric stellar parameter derivation tool, LOTUS , to determine the effective temperature T eff , surface gravity log g , metallicity [Fe/H], and microturbulent velocity v mic for FGK-type stars, from equivalent width (EW) measurements of Fe i and Fe ii lines. We utilize a generalized curve of growth method to take into account the EW dependencies of each Fe i and Fe ii line on the corresponding atmospheric stellar parameters. A global differential evolution optimization algorithm is then used to derive the fundamental parameters. Additionally, LOTUS can determine precise uncertainties for each stellar parameter using a Markov Chain Monte Carlo algorithm. We test and apply LOTUS on a sample of benchmark stars, as well as stars with available asteroseismic surface gravities from the K2 survey, and metal-poor stars from the Gaia-ESO and R -Process Alliance surveys. We find very good agreement between our NLTE-derived parameters in LOTUS to nonspectroscopic values on average within T eff = ±30 K, and log g = ±0.10 dex for benchmark stars. We provide open access of our code, as well as of the interpolated precomputed NLTE EW grids available on Github (the software is available on GitHub 3 3 https://github.com/Li-Yangyang/LOTUS under an MIT License, and version 0.1.1 (as the persistent version) is archived in Zenodo) and documentation with working examples on the Readthedocs book. 
    more » « less
  2. We propose an algorithm to impute and forecast a time series by transforming the observed time series into a matrix, utilizing matrix estimation to recover missing values and de-noise observed entries, and performing linear regression to make predictions. At the core of our analysis is a representation result, which states that for a large class of models, the transformed time series matrix is (approximately) low-rank. In effect, this generalizes the widely used Singular Spectrum Analysis (SSA) in the time series literature, and allows us to establish a rigorous link between time series analysis and matrix estimation. The key to establishing this link is constructing a Page matrix with non-overlapping entries rather than a Hankel matrix as is commonly done in the literature (e.g., SSA). This particular matrix structure allows us to provide finite sample analysis for imputation and prediction, and prove the asymptotic consistency of our method. Another salient feature of our algorithm is that it is model agnostic with respect to both the underlying time dynamics and the noise distribution in the observations. The noise agnostic property of our approach allows us to recover the latent states when only given access to noisy and partial observations a la a Hidden Markov Model; e.g., recovering the time-varying parameter of a Poisson process without knowing that the underlying process is Poisson. Furthermore, since our forecasting algorithm requires regression with noisy features, our approach suggests a matrix estimation based method-coupled with a novel, non-standard matrix estimation error metric-to solve the error-in-variable regression problem, which could be of interest in its own right. Through synthetic and real-world datasets, we demonstrate that our algorithm outperforms standard software packages (including R libraries) in the presence of missing data as well as high levels of noise. 
    more » « less
  3. We propose an algorithm to impute and forecast a time series by transforming the observed time series into a matrix, utilizing matrix estimation to recover missing values and de-noise observed entries, and performing linear regression to make predictions. At the core of our analysis is a representation result, which states that for a large class of models, the transformed time series matrix is (approximately) low-rank. In effect, this generalizes the widely used Singular Spectrum Analysis (SSA) in the time series literature, and allows us to establish a rigorous link between time series analysis and matrix estimation. The key to establishing this link is constructing a Page matrix with non-overlapping entries rather than a Hankel matrix as is commonly done in the literature (e.g., SSA). This particular matrix structure allows us to provide finite sample analysis for imputation and prediction, and prove the asymptotic consistency of our method. Another salient feature of our algorithm is that it is model agnostic with respect to both the underlying time dynamics and the noise distribution in the observations. The noise agnostic property of our approach allows us to recover the latent states when only given access to noisy and partial observations a la a Hidden Markov Model; e.g., recovering the time-varying parameter of a Poisson process without knowing that the underlying process is Poisson. Furthermore, since our forecasting algorithm requires regression with noisy features, our approach suggests a matrix estimation based method—coupled with a novel, non-standard matrix estimation error metric—to solve the error-in-variable regression problem, which could be of interest in its own right. Through synthetic and real-world datasets, we demonstrate that our algorithm outperforms standard software packages (including R libraries) in the presence of missing data as well as high levels of noise. 
    more » « less
  4. We consider the problem of spectrum sharing by multiple cellular operators. We propose a novel deep Reinforcement Learning (DRL)-based distributed power allocation scheme which utilizes the multi-agent Deep Deterministic Policy Gradient (MA-DDPG) algorithm. In particular, we model the base stations (BSs) that belong to the multiple operators sharing the same band, as DRL agents that simultaneously determine the transmit powers to their scheduled user equipment (UE) in a synchronized manner. The power decision of each BS is based on its own observation of the radio environment (RF) environment, which consists of interference measurements reported from the UEs it serves, and a limited amount of information obtained from other BSs. One advantage of the proposed scheme is that it addresses the single-agent non-stationarity problem of RL in the multi-agent scenario by incorporating the actions and observations of other BSs into each BS's own critic which helps it to gain a more accurate perception of the overall RF environment. A centralized-training-distributed-execution framework is used to train the policies where the critics are trained over the joint actions and observations of all BSs while the actor of each BS only takes the local observation as input in order to produce the transmit power. Simulation with the 6 GHz Unlicensed National Information Infrastructure (U-NII)-5 band shows that the proposed power allocation scheme can achieve better throughput performance than several state-of-the-art approaches. 
    more » « less
  5. This work studies online learning-based trajectory planning for multiple autonomous underwater vehicles (AUVs) to estimate a water parameter field of interest in the under-ice environment. A centralized system is considered, where several fixed access points on the ice layer are introduced as gateways for communications between the AUVs and a remote data fusion center. We model the water parameter field of interest as a Gaussian process with unknown hyper-parameters. The AUV trajectories for sampling are determined on an epoch-by-epoch basis. At the end of each epoch, the access points relay the observed field samples from all the AUVs to the fusion center, which computes the posterior distribution of the field based on the Gaussian process regression and estimates the field hyper-parameters. The optimal trajectories of all the AUVs in the next epoch are determined to maximize a long-term reward that is defined based on the field uncertainty reduction and the AUV mobility cost, subject to the kinematics constraint, the communication constraint and the sensing area constraint. We formulate the adaptive trajectory planning problem as a Markov decision process (MDP). A reinforcement learning-based online learning algorithm is designed to determine the optimal AUV trajectories in a constrained continuous space. Simulation results show that the proposed learning-based trajectory planning algorithm has performance similar to a benchmark method that assumes perfect knowledge of the field hyper-parameters. 
    more » « less