skip to main content


Title: The Theory of Efficient Particle Acceleration at Shocks
The recent discoveries in the theory of diffusive shock acceleration (DSA) that stem from first-principle kinetic plasma simulations are discussed. When ion acceleration is efficient, the back-reaction of non-thermal particles and self-generated magnetic fields becomes prominent and leads to both enhanced shock compression and particle spectra significantly softer than the standard test-particle DSA theory. These results are discussed in the context of the non-thermal phenomenology of astrophysical shocks, with a special focus on the supernova remnant SN1006.  more » « less
Award ID(s):
1936393
NSF-PAR ID:
10293951
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
37th International Cosmic Ray Conference (ICRC2021)
Page Range / eLocation ID:
482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The possibility that charged particles are accelerated statistically in a “sea” of small-scale interacting magnetic flux ropes in the supersonic solar wind is gaining credence. In this Letter, we extend the Zank et al. statistical transport theory for a nearly isotopic particle distribution by including an escape term corresponding to particle loss from a finite acceleration region. Steady-state 1D solutions for both the accelerated particle velocity distribution function and differential intensity are derived. We show Ulysses observations of an energetic particle flux enhancement event downstream of a shock near 5 au that is inconsistent with the predictions of classical diffusive shock acceleration (DSA) but may be explained by local acceleration associated with magnetic islands. An automated Grad-Shafranov reconstruction approach is employed to identify small-scale magnetic flux ropes behind the shock. For the first time, the observed energetic particle “time-intensity” profile and spectra are quantitatively compared with theoretical predictions. The results show that stochastic acceleration by interacting magnetic islands accounts successfully for the observed (i) peaking of particle intensities behind the shock instead of at the shock front as standard DSA predicts; (ii) increase in the particle flux amplification factor with increasing particle energy; (ii) increase in distance between the particle intensity peak and the shock front with increasing energy; and (iv) hardening of particle power-law spectra with increasing distance downstream of the shock. 
    more » « less
  2. The possibility that charged particles are accelerated statistically in a “sea” of small-scale interacting magnetic flux ropes in the supersonic solar wind is gaining credence. In this Letter, we extend the Zank et al. statistical transport theory for a nearly isotopic particle distribution by including an escape term corresponding to particle loss from a finite acceleration region. Steady-state 1D solutions for both the accelerated particle velocity distribution function and differential intensity are derived. We show Ulysses observations of an energetic particle flux enhancement event downstream of a shock near 5 au that is inconsistent with the predictions of classical diffusive shock acceleration (DSA) but may be explained by local acceleration associated with magnetic islands. An automated Grad-Shafranov reconstruction approach is employed to identify small-scale magnetic flux ropes behind the shock. For the first time, the observed energetic particle “time-intensity” profile and spectra are quantitatively compared with theoretical predictions. The results show that stochastic acceleration by interacting magnetic islands accounts successfully for the observed (i) peaking of particle intensities behind the shock instead of at the shock front as standard DSA predicts; (ii) increase in the particle flux amplification factor with increasing particle energy; (ii) increase in distance between the particle intensity peak and the shock front with increasing energy; and (iv) hardening of particle power-law spectra with increasing distance downstream of the shock. 
    more » « less
  3. Abstract

    The ability of collisionless shocks to efficiently accelerate nonthermal electrons via diffusive shock acceleration (DSA) is thought to require an injection mechanism capable of preaccelerating electrons to high enough energy where they can start crossing the shock front potential. We propose, and show via fully kinetic plasma simulations, that in high-Mach-number shocks electrons can be effectively injected by scattering in kinetic-scale magnetic turbulence produced near the shock transition by the ion Weibel, or current filamentation, instability. We describe this process as a modified DSA mechanism where initially thermal electrons experience the flow velocity gradient in the shock transition and are accelerated via a first-order Fermi process as they scatter back and forth. The electron energization rate, diffusion coefficient, and acceleration time obtained in the model are consistent with particle-in-cell simulations and with the results of recent laboratory experiments where nonthermal electron acceleration was observed. This injection model represents a natural extension of DSA and could account for electron injection in high-Mach-number astrophysical shocks, such as those associated with young supernova remnants and accretion shocks in galaxy clusters.

     
    more » « less
  4. Abstract The Voyager 2 crossing of the termination shock indicated that most of the upstream energy from the thermal solar wind ions was transferred to pickup ions (PUIs) and other energetic particles downstream of the shock. We use hybrid simulations at the termination shock for the Voyager 2, flank, and tail directions to evaluate the distributions of different ion species downstream of the shock over the energy range of 0.52–55 keV. Here, we extend the work of Gkioulidou et al., which showed an energy-dependent discrepancy between modeled and energetic neutral atom (ENA) observations, and fit distributions to a hybrid model to show that a population of PUIs accelerated via diffusive shock acceleration (DSA) to become low-energy anomalous cosmic rays (ACRs) can bridge the gap between modeled and observed ENA fluxes. Our results with the inclusion of DSA via hybrid fitting give entirely new and novel evidence that DSA at the termination shock is likely to be an important physical process. These ACRs carry a significant fraction of the energy density at the termination shock (22%, 13%, and 19% in the Voyager 2, flank, and tail directions, respectively). Using these ACRs in global ENA modeling of the heliosphere from 0.52 to 55 keV, we find that scaling factors as large as 1.8–2.5 are no longer required to match ENA observations at energies of ∼1–4 keV. Large discrepancies between modeled and observed ENAs only remain over energies of 4–20 keV, indicating that there may be a further acceleration mechanism in the heliosheath at these energies. 
    more » « less
  5. Abstract Galactic cosmic rays (CRs) are accelerated at the forward shocks of supernova remnants (SNRs) via diffusive shock acceleration (DSA), an efficient acceleration mechanism that predicts power-law energy distributions of CRs. However, observations of nonthermal SNR emission imply CR energy distributions that are generally steeper than E −2 , the standard DSA prediction. Recent results from kinetic hybrid simulations suggest that such steep spectra may arise from the drift of magnetic structures with respect to the thermal plasma downstream of the shock. Using a semi-analytic model of nonlinear DSA, we investigate the implications that these results have on the phenomenology of a wide range of SNRs. By accounting for the motion of magnetic structures in the downstream, we produce CR energy distributions that are substantially steeper than E −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝ E −2.2 ) and the very steep spectra of young radio supernovae (∝ E −3 ). 
    more » « less