Abstract Marijuana and hemp represent two broad classes ofCannabis sativaplants that are distinguished based on the concentration of the psychoactive cannabinoid delta‐9‐tetrahydrocannabinol (Δ9‐THC). In this work, solvent extracts derived from marijuana and hemp were characterized using optical and spectroscopic techniques. The crystalline components of the solvent extracts were first analyzed using polarized light microscopy to determine optical properties, namely, crystal system, optical sign, and principle refractive indices. Crystals from the marijuana‐derived extracts exhibited an orthorhombic crystal system and were optically negative, with nβbetween 1.6320 and 1.6330 ± 0.0002. In contrast, crystals from hemp‐derived extracts exhibited a monoclinic crystal system and were optically positive, with nβbetween 1.600 and 1.6040 ± 0.0002. Crystals were further distinguished through infrared spectroscopy, which highlighted structural differences between the two sample types, primarily based on differences in O‐H stretching. Finally, single‐crystal X‐ray diffraction was used to definitively identify the crystalline components, confirming the presence of tetrahydrocannabinolic acid in marijuana‐derived extracts and cannabidiol in hemp‐derived extracts. Given the differences in crystal structure identified between marijuana‐derived and hemp‐derived solvent extracts, optical characterization provides a screening method to differentiate visually similar samples prior to confirmatory analysis.
more »
« less
Depth-of-field extension in optical imaging for rapid crystal screening
The depth of field (DoF) was extended 2.8-fold to achieve rapid crystal screening by retrofitting a custom-designed micro-retarder array (µRA) in the optical beam path of a nonlinear optical microscope. The merits of the proposed strategy for DoF enhancement were assessed in applications of second-harmonic generation imaging of protein crystals. It was found that DoF extension increased the number of crystals detected while simultaneously reducing the number of ` z -slices' required for screening. Experimental measurements of the wavelength-dependence of the extended DoF were in excellent agreement with theoretical predictions. These results provide a simple and broadly applicable approach to increase the throughput of existing nonlinear optical imaging methods for protein crystal screening.
more »
« less
- Award ID(s):
- 2004046
- PAR ID:
- 10293979
- Date Published:
- Journal Name:
- Acta Crystallographica Section D Structural Biology
- Volume:
- 77
- Issue:
- 4
- ISSN:
- 2059-7983
- Page Range / eLocation ID:
- 463 to 470
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Protein crystals are versatile nanostructured materials that can be readily engineered for applications in nanomedicine and nanobiotechnology. Despite their versatility, the small size of typical individual protein crystals (less than one cubic mm) presents challenges for macroscale applications. One way to overcome this limitation is by immobilizing protein crystals onto larger substrates. Cotton is composed primarily of cellulose, the most common natural fiber in the world, and is routinely used in numerous material applications including textiles, explosives, paper, and bookbinding. Here, two types of protein crystals were conjugated to the cellulosic substrate of cotton fabric using a 1,1′-carbonyldiimidazole/aldehyde mediated coupling protocol. The efficacy of this attachment was assessed via accelerated laundering and quantified by fluorescence imaging. The ability to load guest molecules of varying sizes into the scaffold structure of the conjugated protein crystals was also assessed. This work demonstrates the potential to create multifunctional textiles by incorporating diverse protein crystal scaffolds that can be infused with a multiplicity of useful guest molecules. Cargo molecule loading and release kinetics will depend on the size of the guest molecules as well as the protein crystal solvent channel geometry. Here, we demonstrate the loading of a small molecule dye into the small pores of hen egg white lysozyme crystals and a model enzyme into the 13-nm pores delimited by “CJ” crystals composed of an isoprenoid-binding protein from Campylerbacter jejuni.more » « less
-
Nonlinear optical (NLO) crystals with superior properties are significant for advancing laser technologies and applications. Introducing rare earth metals to borates is a promising and effective way to modify the electronic structure of a crystal to improve its optical properties in the visible and ultraviolet range. In this work, we computationally discover inversion symmetry breaking in EuBa3(B3O6)3, which was previously identified as centric, and demonstrate noncentrosymmetry via synthesizing single crystals for the first time by the floating zone method. We determine the correct space group to beP6¯. The material has a large direct bandgap of 5.56 eV and is transparent down to 250 nm. The complete anisotropic linear and nonlinear optical properties were also investigated with ad11of ∼0.52 pm/V for optical second harmonic generation. Further, it is Type I and Type II phase matchable. This work suggests that rare earth metal borates are an excellent crystal family for exploring future deep ultraviolet (DUV) NLO crystals. It also highlights how first principles computations combined with experiments can be used to identify noncentrosymmetric materials that have been wrongly assigned to be centrosymmetric.more » « less
-
null (Ed.)Crosslinked porous protein crystals are a new biomaterial that can be engineered to encapsulate, stabilize, and organize guest molecules, nanoparticles, and biological moieties. In this study, for the first time, the combined interactions of DNA strands with porous protein crystals are quantitatively measured by high-resolution atomic force microscopy (AFM) and chemical force microscopy. The surface structure of protein crystals with unusually large pores was observed in liquid via high-resolution AFM. Force–distance ( F – D ) curves were also obtained using AFM tips modified to present or capture DNA. The modification of AFM tips allowed the tips to covalently bind DNA that was pre-loaded in the protein crystal nanopores. The modified tips enabled the interactions of DNA molecules with protein crystals to be quantitatively studied while revealing the morphology of the buffer-immersed protein crystal surface in detail, thereby preserving the structure and properties of protein crystals that could be disrupted or destroyed by drying. The hexagonal space group was manifest at the crystal surface, as were the strong interactions between DNA and the porous protein crystals in question. In sum, this study furthered our understanding of how a new protein-based biomaterial can be used to bind guest DNA assemblies.more » « less
-
Light-sheet microscopes must compromise among field of view, optical sectioning, resolution, and detection efficiency. High-numerical-aperture (NA) detection objective lenses provide higher resolution, but their narrow depth of field inefficiently captures the fluorescence signal generated throughout the thickness of the illumination light sheet when imaging large volumes. Here, we present ExD-SPIM (extended depth-of-field selective-plane illumination microscopy), an improved light-sheet microscopy strategy that solves this limitation by extending the depth of field (DOF) of high-NA detection objectives to match the thickness of the illumination light sheet. This extension of the DOF uses a phase mask to axially stretch the point-spread function of the objective lens while largely preserving lateral resolution. This matching of the detection DOF to the illumination-sheet thickness increases the total fluorescence collection, reduces the background, and improves the overall signal-to-noise ratio (SNR), as shown by numerical simulations, imaging of bead phantoms, and imaging living animals. In comparison to conventional light sheet imaging with low-NA detection that yields equivalent DOF, the results show that ExD-SPIM increases the SNR by more than threefold and dramatically reduces the rate of photobleaching. Compared to conventional high-NA detection, ExD-SPIM improves the signal sensitivity and volumetric coverage of whole-brain activity imaging, increasing the number of detected neurons by over a third.more » « less
An official website of the United States government

