Anisotropy in additive manufacturing (AM), particularly in the material extrusion process, plays a crucial role in determining the actual structural performance, including the stiffness and strength of the printed parts. Unless accounted for, anisotropy can compromise the objective performance of topology-optimized structures and allow premature failures for stress-sensitive design domains. This study harnesses process-induced anisotropy in material extrusion-based 3D printing to design and fabricate stiff, strong, and lightweight structures using a two-step framework. First, an AM-oriented anisotropic strength-based topology optimization formulation optimizes the structural geometry and infill orientations, while assuming both anisotropic (i.e., transversely isotropic) and isotropic infill types as candidate material phases. The dissimilar stiffness and strength interpolation schemes in the formulation allow for the optimized allocation of anisotropic and isotropic material phases in the design domain while satisfying their respective Tsai–Wu and von Mises stress constraints. Second, a suitable fabrication methodology realizes anisotropic and isotropic material phases with appropriate infill density, controlled print path (i.e., infill directions), and strong interfaces of dissimilar material phases. Experimental investigations show up to 37% improved stiffness and 100% improved strength per mass for the optimized and fabricated structures. The anisotropic strength-based optimization improves load-carrying capacity by simultaneous infill alignment along the stress paths and topological adaptation in response to high stress concentration. The adopted interface fabrication methodology strengthens comparatively weaker anisotropic joints with minimal additional material usage and multi-axial infill patterns. Furthermore, numerically predicted failure locations agree with experimental observations. The demonstrated framework is general and can potentially be adopted for other additive manufacturing processes that exhibit anisotropy, such as fiber composites.
more »
« less
Simplified approach to characterize anisotropic strength of granular soils
Abstract Experimental evidence shows that the strength of granular soils is significantly influenced by inherent cross anisotropy which cannot be properly described by isotropic failure criteria. This paper reviewed laboratory test results of various sands at different fabric directions. Based on the observations, this paper formulates the hypothesis that deposit plane creates a plane of weakness and the anisotropic strength of sands depends on orientations of deposit plane and failure plane. The strength decreases when orientations of deposit plane and failure plane are close to each other, and the strength increase when they diverge from each other. Then, an anisotropic failure criterion is developed based on this hypothesis and validated by available experimental data from literature. Remarkable agreements between predictions and measurements have been observed, which demonstrate validity, effectiveness, and robustness of new criterion in characterizing anisotropic strength of sands with variations of loading directions and intermediate principal stresses.
more »
« less
- Award ID(s):
- 1917332
- PAR ID:
- 10294033
- Date Published:
- Journal Name:
- International Journal of Geo-Engineering
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2092-9196
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A criterion to predict the onset of disordering under biaxial loading based on a critical potential energy per atom was studied. In contrast to previous theories for disordering, this criterion incorporates the effects of strain rate and strain state. The strain state (or stress state) is defined by the combination of strain (or stress) magnitudes and directions that are applied to each sample during the simulation. The validity of this criterion was studied using molecular dynamic (MD) simulations of Ag conducted over a wide range of biaxial strain rates, strain configurations, and crystal orientations with respect to the applied stress state. Biaxial strains were applied in two different planes, ( 11 2 ¯ ) and (001) in eight directions in each plane. Results showed that, when larger strain rates were applied, there was a transition from plastic deformation driven by the nucleation and propagation of dislocations to disordering and viscous flow. Although the critical strain rate to initiate disorder was found to vary in the range of ε ˙ = 1 × 10 11 s −1 to ε ˙ = 4 × 10 11 s −1 , a consistent minimum PE/atom of −2.7 eV was observed over a broad range of strain states and for both crystallographic orientations that were studied. This indicates that the critical PE/atom is a material property that can be used to predict the onset of disordering under biaxial loading. Further, the results showed that this criterion can be applied successfully even when non-uninform strain states arise in the crystal.more » « less
-
The original two-dimensional bond-based peridynamic (BBPD) framework, which only considers the pairwise forces (compression and tension) between two material points, is extended by incorporating the effect of shear deformation in the calculations and its influence on the failure of the bonds. To this end, each bond is considered as a short Timoshenko beam, and by doing so, the traditional BBPD is enhanced into a more comprehensive model known as multi-polar peridynamic (MPPD). The proposed novel approach explicitly considers the shear influence factor used in Timoshenko beams and introduces a strain-based shear deformation failure criterion. The model is then validated against two benchmark experimental tests (i.e., a standard pure mode I edge crack, and a Kalthoff-Winkler configuration) reported in the literature under in-plane dynamic loading and plane stress conditions. In most cases, the developed model is shown to be more accurate in predicting the crack paths obtained from the experimental results when compared to other theoretical methods delineated in the literature. Furthermore, a noticeable change in crack branching and crack path is observed in a study on the effects of Poisson’s ratio and the loading rate. This investigation also demonstrated that the proposed MPPD model can accommodate materials with Poisson’s ratios up to 1/3, expanding the range beyond the traditional BBPD limitations.more » « less
-
Deshpande, Vikram (Ed.)The yield surface of a material is a criterion at which macroscopic plastic deformation begins. For crystalline solids, plastic deformation occurs through the motion of dislocations, which can be captured by discrete dislocation dynamics (DDD) simulations. In this paper, we predict the yield surfaces and strain-hardening behaviors using DDD simulations and a geometric manifold learning approach. The yield surfaces in the three-dimensional space of plane stress are constructed for single-crystal copper subjected to uniaxial loading along the [100] and [110] directions, respectively. With increasing plastic deformation under loading, the yield surface expands nearly uniformly in all directions, corresponding to isotropic hardening. In contrast, under [110] loading, latent hardening is observed, where the yield surface remains nearly unchanged in the orientations in the vicinity of the loading direction itself but expands in other directions, resulting in an asymmetric shape. This difference in hardening behaviors is attributed to the different dislocation multiplication behaviors on various slip systems under the two loading conditions.more » « less
-
Abstract Inspired by the protective armors in nature, composites with asymmetric 3D articulated tiles attached to a soft layer are designed and fabricated via a multi-material 3D printer. The bending resistance of the new designs are characterized via three-point bending experiments. Bending rigidity, strength, and final deflection of the designs are quantified and compared when loaded in two different in-plane and two different out-of-plane directions. It is found that in general, the designs with articulated tiles show direction-dependent bending behaviors with significantly increased bending rigidity, strength, and deflection to final failure in certain loading directions, as is attributed to the asymmetric tile articulation (asymmetric about the mid-plane of tiles) and an interesting sliding-induced auxetic effect. Analytical, numerical, and experimental analyses are conducted to unveil the underlying mechanisms.more » « less
An official website of the United States government

