Regional patterns of sea level rise are affected by a range of factors including glacial melting, which has occurred in recent decades and is projected to increase in the future, perhaps dramatically. Previous modeling studies have typically included fluxes from melting glacial ice only as a surface forcing of the ocean or as an offline addition to the sea surface height fields produced by climate models. However, observational estimates suggest that the majority of the meltwater from the Antarctic Ice Sheet actually enters the ocean at depth through ice shelf basal melt. Here we use simulations with an ocean general circulation model in an idealized configuration. The results show that the simulated global sea level change pattern is sensitive to the depth at which Antarctic meltwater enters the ocean. Further analysis suggests that the response is dictated primarily by the steric response to the depth of the meltwater flux.
- Award ID(s):
- 1664013
- PAR ID:
- 10294039
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 39
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaaz1169
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Climate-forced, offline ice-sheet model simulations have been used extensively in assessing how much ice-sheets can contribute to future global sea-level rise. Typically, these model projections do not account for the two-way interactions between ice-sheets and climate. To quantify the impact of ice-ocean-atmosphere feedbacks, here we conduct greenhouse warming simulations with a coupled global climate-ice-sheet model of intermediate complexity. Following the Shared Socioeconomic Pathway (SSP) 1-1.9, 2-4.5, 5-8.5 emission scenarios, the model simulations ice-sheet contributions to global sea-level rise by 2150 of 0.2 ± 0.01, 0.5 ± 0.01 and 1.4 ± 0.1 m, respectively. Antarctic ocean-ice-sheet-ice-shelf interactions enhance future subsurface basal melting, while freshwater-induced atmospheric cooling reduces surface melting and iceberg calving. The combined effect is likely to decelerate global sea-level rise contributions from Antarctica relative to the uncoupled climate-forced ice-sheet model configuration. Our results demonstrate that estimates of future sea-level rise fundamentally depend on the complex interactions between ice-sheets, icebergs, ocean and the atmosphere.
-
Abstract Coupled global climate models (GCMs) generally fail to reproduce the observed sea‐surface temperature (SST) trend pattern since the 1980s. The model‐observation discrepancies may arise in part from the lack of realistic Antarctic ice‐sheet meltwater input in GCMs. Here we employ two sets of CESM1‐CAM5 simulations forced by anomalous Antarctic meltwater fluxes over 1980–2013 and through the 21st century. Both show a reduced global warming rate and an SST trend pattern that better resembles observations. The meltwater drives surface cooling in the Southern Ocean and the tropical southeast Pacific, in turn increasing low‐cloud cover and driving radiative feedbacks to become more stabilizing (corresponding to a lower effective climate sensitivity). These feedback changes can contribute as substantially as ocean heat uptake efficiency changes in reducing the global warming rate. Accurately projecting historical and future warming thus requires improved representation of Antarctic meltwater and its impacts.
-
Observational evidence indicates that the West Antarctic Ice Sheet is losing mass at an accelerated rate while ice sheet models highlight the potential for a significant ice collapse in the next century. The impacts of this large fresh water forcing on sea-ice formation, ocean circulation and climate could be significant, but to-date they have not been investigated using complex numerical models with realistic fresh water forcing and dynamical ice sheet models. Here, we present results from several climate model simulations performed under IPCC future climate scenarios RCP 4.5 and 8.5 with a high-resolution, fully coupled, ocean-atmosphere model (CESM 1.2). In each experiment, runoff from Antarctica is prescribed from a regional dynamic/thermodynamic ice sheet/shelf model. Our results highlight a significant rise in subsurface ocean temperatures (>1C) at the ice sheet grounding line that may accelerate rates of ice melt beyond those currently projected. In contrast, the increased runoff creates a cold surface layer that allows Antarctic sea ice to continue to expand through the end of the current century. It is vital that these processes are accounted for in the next generation of climate and ice sheet models.more » « less
-
Abstract. During the mid-Pliocene warm period (mPWP; 3.264–3.025 Ma), atmospheric CO2 concentrations were approximately 400 ppm, and the Antarctic Ice Sheet was substantially reduced compared to today. Antarctica is surrounded by the Southern Ocean, which plays a crucial role in the global oceanic circulation and climate regulation. Using results from the Pliocene Model Intercomparison Project (PlioMIP2), we investigate Southern Ocean conditions during the mPWP with respect to the pre-industrial period. We find that the mean sea surface temperature (SST) warming in the Southern Ocean is 2.8 °C, while global mean SST warming is 2.4 °C. The enhanced warming is strongly tied to a dramatic decrease in sea ice cover over the mPWP Southern Ocean. We also see a freshening of the ocean (sub)surface, driven by an increase in precipitation over the Southern Ocean and Antarctica. The warmer and fresher surface leads to a highly stratified Southern Ocean that can be related to weakening of the deep abyssal overturning circulation. Sensitivity simulations show that the decrease in sea ice cover and enhanced warming is largely a consequence of the reduction in the Antarctic Ice Sheet. In addition, the mPWP geographic boundary conditions are responsible for approximately half of the increase in mPWP SST warming, sea ice loss, precipitation, and stratification increase over the Southern Ocean. From these results, we conclude that a strongly reduced Antarctic Ice Sheet during the mPWP has a substantial influence on the state of the Southern Ocean and exacerbates the changes that are induced by a higher CO2 concentration alone. This is relevant for the long-term future of the Southern Ocean, as we expect melting of the western Antarctic Ice Sheet in the future, an effect that is not currently taken into account in future projections by Coupled Model Intercomparison Project (CMIP) ensembles.