skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structurally and chemically engineered graphene for capacitive deionization
Highly efficient capacitive deionization (CDI) relies on unimpeded transport of salt ions to the electrode surface. Graphene is an ideal candidate to provide superb conditions for ion adsorption as it possesses high theoretical surface area and electrical conductivity. When ions are stored solely within the electric double layers (EDLs), a hydrophilic graphene surface with hierarchical pores can maximize the accessible surface area and promote the ion transport. In the case of synergistic ion storage via electrostatic adsorption and faradaic redox reaction, graphene can act as both the electron highway and the reciprocal spacer to provide surface-confined effects. Substantially, structural and chemical engineering towards graphene can enhance the ion removal capacity and rate, and improve the charge efficiency and ion selectivity. In this review, we keep pace with the in-depth studies of CDI technologies and recent progress on graphene-based materials for CDI. Major challenges in the rational assembly of the desired material functionalities in terms of surface area, pore structure, and hydrophilicity are addressed. As electrode materials develop, the ultimate goal is to achieve highly efficient, energy-saving, and environment-friendly CDI.  more » « less
Award ID(s):
1661699
PAR ID:
10294042
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
9
Issue:
3
ISSN:
2050-7488
Page Range / eLocation ID:
1429 to 1455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Capacitive deionization (CDI) is an energy saving and environmentally friendly technology for water desalination. However, classical CDI is challenged by a low salt removal capacity. To improve the desalination capacity, electrode materials utilizing the battery mechanism for salt ion removal have emerged as a new direction more recently. In this work, we report a study of amorphous iron phosphate (FePO 4 ) as a promising electrode material for pseudocapacitive sodium ion removal. Sodium ions can be effectively, reversibly intercalated and de-intercalated upon its electrochemical reduction and oxidation, with an excellent sodium ion capacity under half-cell testing conditions. By assembling a hybrid CDI (HCDI) system utilizing the FePO 4 electrode for pseudocapacitive sodium ion removal and active carbon electrode for capacitive chloride ion removal, the cell exhibited a high salt removal capacity and good reversibility and durability, which was attributed to the advantageous features of amorphous FePO 4 . The HCDI system achieved a high deionization capacity (82 mg g −1 ) in 10 mM NaCl, a fast deionization rate (0.046 mg g −1 s −1 ), and good stability and cyclability. 
    more » « less
  2. Capacitive deionization (CDI) technologies have gained intense attention for water purification and desalination in recent years. Inexpensive and widely available porous carbon materials have enabled the fast growth of electrosorption research, highlighting the promise of CDI as a potentially cost-effective technology to remove ions. Whereas the main focus of CDI has been on bulk desalination, there has been a recent shift towards electrosorption for selective ion separations. Heavy metals are pollutants that can have severe health impacts and are present in both industrial wastewater and groundwater leachates. Heavy metal ions, such as chromium, cadmium, or arsenic, are of great concern to traditional treatment technologies, due to their low concentration and the presence of competing species. The modification/functionalization of porous carbon and recent developments of faradaic and redox-active materials have offered a new avenue for selective ion-binding of heavy metal contaminants. Here, we review the progress in electrosorptive technologies for heavy metal separations. We provide an overview of the wide applicability of carbon-based electrodes for heavy metal removal. In parallel, we highlight the trend toward modification of carbon materials, new developments in faradaic interfaces, and the underlying physico-chemical mechanisms that promote selective heavy metal separations. 
    more » « less
  3. Each year approximately 1.3 billion tons of food is either wasted or lost. One of the most wasted foods in the world is bread. The ability to reuse wasted food in another area of need, such as water scarcity, would provide a tremendous sustainable outcome. To address water scarcity, many areas of the world are now implementing desalination. One desalination technology that could benefit from food waste reuse is capacitive deionization (CDI). CDI has emerged as a powerful desalination technology that essentially only requires a pair of electrodes and a low-voltage power supply. Developing freestanding carbon electrodes from food waste could lower the overall cost of CDI systems and the environmental and economic impact from food waste. We created freestanding CDI electrodes from bread. The electrodes possessed a hierarchical pore structure that enabled both high salt adsorption capacity and one of the highest reported values for hydraulic permeability to date in a flow-through CDI system. We also developed a sustainable technique for electrode fabrication that does not require the use of common laboratory equipment and could be deployed in decentralized locations and developing countries with low-financial resources. 
    more » « less
  4. Lithium-ion batteries (LIBs) are ubiquitous in everyday applications. However, Lithium (Li) is a limited resource on the planet and, therefore, not sustainable. As an alternative to lithium, earth-abundant and cheaper multivalent metals such as aluminum (Al) and calcium (Ca) have been actively researched in battery systems. However, finding suitable intercalation hosts for multivalent-ion batteries is urgently needed. Open-tunneled oxides represent a specific category of microparticles distinguished by the presence of integrated one-dimensional channels or nanopores. This work focuses on two promising open-tunnel oxides: Niobium Tungsten Oxide (NTO) and Molybdenum Vanadium Oxide (MoVO). The MoVO structure can accommodate a larger number of multivalent ions than NTO due to its larger surface area and different shapes. Specifically, the MoVO structure can adsorb Ca, Li, and Al ions with adsorption potentials ranging from around 4 to 5 eV. However, the adsorption potential for hexagonal channels of Al ion drops to 1.73 eV due to the limited channel area. The NTO structure exhibits an insertion/adsorption potential of 4.4 eV, 3.4 eV, and 0.9 eV for one Li, Ca, and Al, respectively. Generally, Ca ions are more readily adsorbed than Al ions in both MoVO and NTO structures. Bader charge analysis and charge density plots reveal the role of charge transfer and ion size in the insertion of multivalent ions such as Ca and Al into MoVO and NTO systems. Exploring open-tunnel oxide materials for battery applications is hindered by vast compositional possibilities. The execution of experimental trials and quantum-based simulations is not viable for addressing the challenge of locating a specific item within a large and complex set of possibilities. Therefore, it is imperative to conduct structural stability testing to identify viable combinations with sufficient pore topologies. Data mining and machine learning techniques are employed to discover innovative transitional metal oxide materials. This study compares two machine learning algorithms, one utilizing descriptors and the other employing graphs to predict the synthesizability of new materials inside a laboratory setting. The outcomes of this study offer valuable insights into the exploration of alternative naturally occurring multiscale particles. 
    more » « less
  5. Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe 3 O 4 and reduced-graphene-oxide (Fe 3 O 4 @RGO) anode materials. We demonstrate the relationship between the media pH and Fe 3 O 4 @RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe 3 O 4 @GO sheets at different surrounding pH values, and porosity of the resulted Fe 3 O 4 @RGO anode. The anode shows a high surface area of 338.8 m 2 g −1 with a large amount of 10–40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe 3 O 4 @RGO delivers high specific-charge capacities of 740 mA h g −1 to 200 mA h g −1 at various current densities of 0.5 A g −1 to 10 A g −1 , and an excellent capacity-retention capability even after long-term charge–discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe 3 O 4 -coated graphene materials—which is a major impediment in the synthesis process—and provides a facile synthetic pathway for depositing Fe 3 O 4 and other metal oxide nanoparticles on highly porous RGO. 
    more » « less